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PREFACE.

For the engineering student, pursuing the study of Applied Mechan-
jcs as part of his professional training, and not as additional mathe-
mathical culture, not only is a thoroughly systematic, clear, and
consistent treatment of the subject quite essential, but one which pre-
sents the quantities and conceptions involved in as practical and con-
crete a form as possible, with all the aids of the printer’s and engraver’s
arts; and especially one which, besides showing the derivation of
formulsee from principles, illustrates, inculcates, and lays stress on
correct numerical substitution and the consistent and proper use of
units of measurement; for without this no reliable results can be
reached, and the principal object of these formulse is frustrated.

‘With these requirements in view, and aided by the experience of ten
years in teaching the Mechanics of Engineering at this institution, the
writer has been led to prepare the present work, in which attention is
called to the following features :

The diagrams are very numerous (about one to every page ; an appeal
to the eye is often worth a page of verbal description).

The symbols for distances, angles, forces, etc., used in the algebraioc
work are, as far as possible, inserted directly in the diagrams, render-
ing the latter full and explicit, and thus saving time and mental effort
to the student. In problems in Dynamics three kinds of arrows are
used to distinguish forces, velocities, and accelerations, respectively,
and thus to prevent confusion of ideas.

Tlustrations and examples of a practical nature, both algebraic and
numerical, are of frequent occurrence.

Formule are divided into two classes ; those (homogeneous) admit-
ting of the use of any system of units whatever for measurements of
force, space, mass, and time, in numerical substitution; and those
which are true for specified units only. Attention is repeatedly di-
rected to the matter of correct numerical substitution, especially in
Dynamics, where time and mass, as well as force and space, are among
the quantities considered. The importance, in this connection, of
frequent mention of the quality of the various kinds of quantity em-
ployed, is also recognized, and a corresponding phraseology adopted.

The definition of force (§8) is made to include and illustrate Newton's
law of action and reaction, the misconception of which leads to such
lengthy discussions in technical journals every few years.

In the matter of ¢‘Centrifugal force,” the artificial method, so com-
monly adopted, of regarding a particle moving uniformly ina circle
as in equilibrium, i. e., acted on by a balanced system of forces, one of
which is the ¢‘Centrifugal force,” has been avoided, as being at vari-
ance with a system of Mechanics founded on Newton's laws, according
to the first of which a particle moving in any other than a straight livne
cannot be in equilibrium. In such a system of Mechanics nothing can
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be recognized as a foroe which is not a definite pull, push, pressure,
rub, attraction or repulsion, of one body upon, or against, another.

It is true that the artificial nature of the method referred to is in
some text-bogks fully explained in the context, (in Goodeve's Steam
Engine, for instance, in treating the governor ball,) but is too often not
mentioned at all, so that the student risks being led into error in
attempting kindred problems by what would then seem to him correct
methods,

The general theorem of Work and Energy in machines is developed
gradually by definite and limited steps, in preference to giving a single
demonstration which, from its generality, might be too vague and ab-
struse to be readily grasped by the student.

In the use of the Calculus, (in the elements of which the student is
supposed to have had the training usually given in technical schools by
the end of the second year) the integral sign is always used to indicate
summation (except on p. 857) while the name of anti-derivative of a
given function (of one variable) hasbeen adopted for that function whose
derivative, or differential co-efficient, is the given function (see §258.)

The signs 7 and | are used for perpendicular and parallel, respect-
fvely.

In Torsion and Flexure of Beams, the well worn and sinrple theories
of Navier have been thought sufficient for establishing practical for-
mulz for safe loads and deflections of beams and shafts; and promi.
nence has been given to the methods of designing the cross-sections
and riveting of built-beams and plate-girders, forming the basis of the
tables and rules usually given in the pocket-books of our iron and steel
manufacturers.

The analytical treatment of the continuous girder is not presented in
the general case, preference being given to the graphic method by
Mohr, as greatly superior in simplicity, directness, and interest. For
similar reasons the graphics of the arch of masonry is to be preferred to
the analytical chapter on Linear Arches, whose insertion is chiefly a
concession to the mathematical student, as are also §§ 119, 198, 284, 235,
264, 265, 266, 284, 287, 201, and 297.

The graphics of curved beams or arch ribs is made to precede that of
the straight girder, since the treatment of the latter as a particular case
of the former is then a comparatively simple matter. Hence Prof.
Eddy’s methods* (inserted by his kind permission) for the arch rib ot
hinged ends, and also that of fixed ends, are presented as special geo-
metrical devices, instead of being based on Prof. Eddy’s general theorem
(involving a straight girder of the same section and mode of support).

Acknowledgment is also due Prof. Burr and Prof. Robinson, for
their cordial consent to the use of certain ftems and passages from
their works ; (see §§206, 212, 220, and 297.)

*See pp. 14 and 28 of “ Researches in Graphical Statics,” by Prof. H. T. Eddy,
CE., Ph. ? published by D. Van Nostrand, Newaork. 1878 : reprinted from Van Noe
trand’s Magazine for 1877.
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Advantage has been taken of the results of the most recent experimental
investigations in Hydraulics in assigning values of the numerous coefli-
cients necessary in this science. The researches of Messrs. Fteley and
Stearns in 1880 and of M. Bazin in 1887 on the flow of water over weirs,
and of Mr. Clemens Herschel in testing his invention the ‘‘ Venturi Water-
meter,” are instances in point; as also some late experiments on the
transmission of compressed air and of natural gas, and Mr. Freeman's
extensive Investigations in the Hydraulics of Fire-streams and resistance
of Fire-hose, p. 833. (See Transac. Am. 8oc. Civ. Eng. for Nov. 1889.)

In dealing with fluid tension care has been taken to use the absolute
pressure and not simply the excess over atmospheric, thus avoiding the
occurrence of the term ‘‘ negative pressure;” this precaution being specially
necessary in the treatment of gaseous fluids.

Though space has forbidden dealing at any great length with the action of
fluid motors, sufficient matter is given in treating of the mode of working
of steam, gas, and hot-air engines, air-compressors, and pumping-engines,
together with numerical examples, to be of considerable advantage, it is
thought, to students not making a specialty of mechanical engineering.

Bpecial acknowledgment is due to Col. J. T. Fanning, the well-known
author of ‘“ Hydraulic and Water-supply Engineering,” for his consent to
the use of an abridgment of the table of coeflicients for friction of water
in pipes, given in that work; and to Prof. C. L. Crandall, of this univer-
sity, for permission to incorporate the chapter on Retaining-Walls.

References to original research in the Hydraulic Laboratory of the
Civil Engineering Department at this institution will be found on pp. 684
and 729.

CorNELL UNIVERSITY, ITHACA, N. Y.,
January, 1890.
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MECHANICS OF ENGINEERING.

PRELIMINARY CHAPTER.

1. Mechanics treats of the mmutual actions and relative mo-
ions of material bodies, solid, liquid, and gaseous; and by
Uechanics of Engineering is meant a presentment of those
principles of pure mechanics, and their applications, which are
of special service in engineering problems.

2. Kinds of Quantity.—Mechanics involves the following
fundamental kinds of quantity: Space, of one, two, or three
dimensions, i.e., length, surface, or volume, respectively ; time,
which needs no definition here; force and mass, as defined be-
low; and abstract numbers, whose values are independent of
arbitrary units, as, for example, a ratio.

8. Porce.—A force is one of a pair of equal, opposite, and
simultaneous actions between two bodies, by which the state*
of their motions is altered or a change of form in the bodies
themselves is effected. Pressure, attraction, repulsion, and
traction are instances in point. Muscular sensation conveys
the idea of force, while a spring-balance gives an absolute
measure of it, a beam-balance only a relative measure. In
accordance with Newton’s third law of motion, that action and
reaction are equal, opposite, and simultaneous, forces always
occur in pairs; thus, if a pressure of 40 lbs. exists between
bodies A and B, if A is considered by itself (i.e., “free”),
apart from all other bodies whose actions upon it are called
forces, among these forces will be one of 40 lbs. directed from
B toward A. Similarly, if B is under consideration, a force

#* The state of motion of a small body under the action of no force, or of

balanced forces, is either absolute rest, or uniform motion in a right line.
If the motion is different from this, the fact is due to the action of an un-

balanced force (§ 54).
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of 40 Ibs. directed from A toward B takes its place among the
forces acting on B. This is the interpretation of Newton’s
third law. e

In conceiving of a force as applied at a certain point of a
body it is useful to imagine one end of an imponderable spiral
spring in a state of compression (or tension) as attached at the
given point, the axis of the spring having the given direction
of the force.

4. Mass is the quantity of matter in a body. The masses of
several bodies being proportional to their weights at the same
locality on the earth’s surface, in physics the weight is taken
as the mass, but in practical engineering another mode is used
for measuring it (as explained in a subsequent chapter), viz.:
the mass of a body is equal to its weight divided by the ac-
celeration of gravity in the locality where the weight is taken,
or, symbolically, M = G <+ ¢g. This quotient is a constant
quantity, as it should be, since the mass of a body is invariable
wherever the body be carried.

5. Derived Quantities. —All kinds of quantity besides the
fundamental ones just mentioned are compounds of the latter,
formed by multiplication or division, such as velocity, accele-
ration, momentum, work, energy, moment, power, and force-
distribution. Some of these are merely names given for
convenience to certain combinations of factors which come
together not in dealing with first principles, but as a result of
common algebraic transformations.

6. Homogeneous Equations are those of such a form that they
are true for any arbitrary system of units, and in which all
terms combined by algebraic addition are of the same kind.

e . .
Thus, the equation 8 = % (in which g = the acceleration of

gravity and ¢ the time of vertical fall of a body in vacuo,
from rest) will give the distance fallen through, s, whatever
units be adopted for measuring time and distance. But if for
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g we write the numerical value 32.2, which it assumes when
time is measured in seconds and distance in feet, the equation
8 = 16.1¢' is true for those units alone, and the equation is not
of homogeneous form. Algebraic combipation of homogeneous
equations should always produce homogeneous equations; if
not, some error has been made in the algebraic work. If any
equation derived or proposed for practical use is not homogene-
ous, an explicit statement should be made in the context as to
the proper units to be employed.

7. Heaviness.—By heaviness of a substance is meant the
weight of a cubic unit of the substance. E.g. the heaviness of
fresh water is 62.5, in case the unit of force is the pound,
and the foot the unit of space; i.e., a cubic foot of fresh
water weighs 62.5 lbs. In case the substance is not uniform
in composition, the heaviness varies from point to point. If
the weight of a homogeneous body be denoted by @, its volume
by ¥, and the heaviness of its substance by y, then G = Vy.

WelenT I Pouxps oF A Cusic Foor (i.e., THE HEAVINKESS) OF VARIOUS

MATERIALS
Anthracite, solid.............. 100 | Masonry, dry rubble.......... 138
« broken............ 57 “ dressed granite or

Brick, common hard.......... 125 limestone......oeveveennan. 165

“  B0ft....ceceerenceccsnes 100 | MOMtar..cooveiiieiininnnnans 100
Brick-work, common.......... 112 | Petroleum.......c.ov0eueeae.. [i1]
Concrete........cooeuieeeenes. 125 | Bnow...... ERI R R T RT TR RTPRIN 7
Earth, loose .......coc0ivnnnn (] S - 15 to 50

“ asmud....coeeenenenn. 102 | Steel ..cevveiiie viiiiinnnnn. 490
Granite ..........o000nn 164 to 172 | Timber.........cvvuune.. 5 to 60
Ice..coiviiiinrieniiinenenes 68 | Water, fresh.....ccocvvvnenn.. 62.5
Iron, cast......coovevnevnnnnn 450 BB ..eiieaneinnnnaenns 64.0

““ wrought..............e0 480

8. Specific GravitgAs the ratio of the heaviness of a material
to that of water, and is therefore an abstract number.

9. A Material Point is a solid body, or small particle, whose
dimensions are practically nething, compared with its range of
motion.
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10. A Rigid Body is a eolid, whose distortion or change of
form under any system of forces to be brought upon it in
practice is, for certain purposes, insensible.

11, Rquilibrium.—When a system of forces applied to a
body produces the same effect as if no force acted, so far as
tho state of motion of the body is concerned, they are said to
be balanced, or to be in equilibrium. [If no force acts on a
material point it remaine at rest if already at rest; but if
already in motion it continues in motion, and uniformly
(vqual spaces in equal times), in a right line in direction
of ita original motion, See § 54.]

18. Division of the Subject. —Statics will treat of bodies at
rot, iw, of bualanced forces or equilibrinin; dynamics, of
bodics in motion ; atrengfh of materials will treat of the effect
of forces in distorting bodies ; Aydraulics, of the mechanics
of liguids and gascs (thus including pneumatics).

13. Parallelogram of Forces.—Duchayla’s Proof. To fully
dotermine a force we must have given its amount, its direc-
tion, and its point of application in the body. It is generally
denoted in diagrams by an arrow. It is a matter of experience
that besides the point of application already spoken of any
other way be chosen in the line of action of the force. This
it called the transmissibility of force; i.e.. so far as the state of
motion of the bedy is concerned, a force may be applied any-
where in its line of action.

The Resultant of two forces (called its components) appiied
at & point of & body is a single force applied at the same point,
which wiil replace them.  To prove that this resaltant is given
in amount and position by tire dingonal of the panailelogram
formed on the two given forves (conceived as laid off to some
sl s many poumds te the inehl syl Duchayia’s method
rajuine feur posttiates vizo: (1) the resuiitant of two forces
mnst tle in the e puane with them: 2 the resuizuct of two
sl forees st biseed tie argle betweez them 1§ if one of
© e two Sorees he rervasad, the arsle Detween the citer foree
ad the resnimn: will be grester thuz delore: and (4) ke trams-
eimtnliny of foree aready meniioread Graticg these, we
sovvend ¢ folows JRE 1 Glven e tw Sorees £ oand Q=
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£’ 4 P"” (P and P” being each equal to P, so that @ = 2.P),
applied at 0. Transmit P’ to A. Draw the parallelograms
OB and AD; OD will also be a parallelogram. By postulate
(2), since OB is a rhombus, P and P’ at O may be replaced by
a single force R’ acting through B. Transmit R’ to B and
replace it by P and P’. Transmit P from B to 4, P’ from
B to D. Similarly P and P”, at 4, may be replaced by a
single force R’ passing through .D; transmit it there and re-
solve it into P and P". P’ is already at . Hence P and
P’ + P’ acting at D, are equivalent to P and P’ 4 P” act-
ing at O, in their respective directions. Therefore the result-
ant of P and P’ 4+ P’ must lie in the line 0D, the diagonal
of the parallelogram formed on P and @ = 2P at 0. Similarly

this may be proved (that the diagonal gives the direction of
the resultant) for any two forces P and mF>; and for any two
forces nP and m P, m and n being any two whole numbers,
i.e., for any two commensurable forces. When the forces are
incommensurable (Fig. 2), P and @ being the given forces,
we may use a reductio ad absurdum, thus: Form the parallelo-
gram OD on P and @ applied at 0. Suppose for an instant
that R the resultant of P and @ does not follow the diagonal
0D, but some other direction, as 0D'. Note the intersection
H, and draw H(C parallel to DB. Divide P into equal parts,
each less than HD; then in laying off parts equal to these from
O along OB, a point of division will come at some point
between C'and B. Complete the parallelogram OFEG. The
force @/ = OF is commensurable with P, and hence their
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resultant acts along OE. Now @ is greater than Q”, while B
makes a less angle with 2 than OE, which is contrary to pos-
tulate (3); therefore B cannot lie outside of the line OD.
Q. E.D.

It still remains to prove that the resultant is represented in
amount, as well as position, by the diagonal. 0D (Fig. 8) is

R the direction of & the resultant of P and
A \/\ @; required its amount. If &’ be a force

. :
= ‘0\} equal and opposite to R it will balance P
B ‘p -
peB
Fro. 8.

and @; i.e, the resultant of R’ and P

R+ must lie in the line QO prolonged (besides

being equal to ¢). We can therefore de-

termine R’ by drawing BA parallel to DO to intersect QO

prolonged in A; and then complete the parallelogram on

BAand BO.* Since OFABisa parallelogram 2’ must =BA,

and since OABD is a parallelogram BA=0D; therefore
R’'=0D and also R=0D. Q.E.D.

Corollary.—The resultant of three forces applied at the same

point is the diagonal of the parallelopiped formed on the three

forces.

14. Concurrent forces are those whose lines of action intersect
in a common point, while non-concurrent forces are those which
do not so intersect ; results obtained for a system of concurrent
forces are really derivable, as particular cases, from those per-
taining to a system of non-concurrent forces.

15. Resultant.—A single force, the action of which, as re-
gards the state of motion of the body acted on, is equivalent to
that of a number of forces forming a system, is said to be the
Resultant of that system,and may replace the system ; and con-
versely a force which is equal and opposite to the resultant of
a system will balance that system, or, in other words, when it
is combined with that system there will result a new system in
equilibrium ; this (ideal) force is called the Anti-resultant.

In general, as will be sean, a given system of forces can al-

* R’ must = OF: for if R'> or < OF, the diagonal formed on R’ and P
cannot take the direction of Q¥ prolonged
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ways be replaced by two single forces, but these two can be
combined into a single resultant only in particular cases.

15a. Equivalent Systems are those which may be replaced by
the same set of two single forces—or, in other words, those
which have the same effect, as to state of motion, upon the
given body.

16b. Formulse,.—If in Fig. 8 the forces P and Q and the angle a=
PO Q are given, we have, for the resultant,

=4/P+ Q@ +23PQocosa.

(If « is > 90° its cosine is negative.) In general, given any three parts
of either plane triangle O D @, or O D B, the other three may be obtained
by ordinary trigonometry. Evidently if a=0, R=P + @; if a =
180°, R=P— Q; andif a =90°, R= / P* + Q.

15c. Varieties of Foroes.—Great care should be used in deciding
what may properly be called forces. The latter may be divided into ac-
tions dy conlact, and actions at a distance. 1f pressure exists between two
bodies and they are perfectly smooth at the surface of contact, the pressure
(or thrust, or compressive action), of one against the other constitutes a force,
whose direction is normal to the tangent plane at any point of contact (a
matter of experience) ; while if those surfaces are not smooth there may also
exist mutual tangential actions or friction. (If the bodies really form a
continuous substance at the surface considered, these tangential actions are
called shearing forces.) Again, when a rod or wire is subjected to tension,
any portion of it is said to exert a pull or tensile force upon the remainder ;
the ability to do this depends on the property of cohesion. The foregomg
are examples of actions by contact.

Actions at a distance are exemplified in the mysterious aftractions, or re-
pulsions, observable in the phenomena of gravitation, electricity, and mag-
netism, where the bodies concerned are not necessarily in contact. By the
term weight we shall always mean the forcs of the earth’s attraction on the
body in question, and not the amount of matter in it.

[Nore.—In some common phrases, such as * The tremendous force* of a heavy body in
rapid motion, the word force is not used in a technical sense, but signifies energy (as ex-
plained in Chap. V1.). The mere fact that a body is in motion, whatever its mass and
velocity, does not imply that it is under the action of any force, necessarily. For instance,
at any point in the path of a cannon ball through the air, the only forces acting on it are
the resistance of the air and the attraction of the earth, the latter having a vertical and
downward direction.]



PART I.—STATICS.

CHAPTER L
S8TATICS OF A MATERIAL POINT.

16. Composition of Concurrent Forces.—A system of forces
acting on a material point is necessarily composed of concurrent

forces. ,
Case I.—All the forces in One Plane. ILet O be the
material point, the common point of application of all the

forces; P,, P,, etc., the given forces, making

Y‘—7P. angles a,, a,, etc., with the axis X. By the

p,  parallelogram of forces £, may be resolved

Cral into and replaced by its components, P, cos «,
ityX . f

o= acting along X, and P, sin a, along Y.

Fro. 4. Similarly all the remaining forces may be re-

placed by their Xand ¥ components We have now a new
system, the equivalent of that first given, consisting of a set of
X forces, having the same line of application (axis X), and a
set of Y forces, all acting in the line ¥. The resultant of the
X forces being their algebraic sum (denoted by =X) (since
they have the same line of application) we have

22X = P, cos a, + P, cos @, + ete. = Z(P cos a),
and similarly
2Y = P,sin a, 4+ P, sin a, 4 ete. = Z(Psin a).

These two forces, ZX and =Y, may he combined by the
parallelogram of forces, giving 2 = VYEX)yF (Y)Y the
single resultant of the whole system, and ite direction is deter-

mined by the angle a; thus, tan @ = i—‘l;; see Fig. 5. For

equilibrium to exist, £ must = 0, which requires, separately,
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2X=0,and 2Y =0 (for the two squares (ZX)' and
(2Y)* can neither of them be negative quantities).

Case II.—The forces having any directions in space,
but all applied at O, the material point. Let P, P,
etc., be the given forces, P, making the angles a,, 8,, and y,,
respectively, with three. arbitrary axes, X, Y, and Z (Fig. 6),
at right angles to each other and intersecting at O, the origin.
Similarly let a,, g, y,, be the angles made by P, with these
axes, and so on for all the forces. By the parallelopiped of
forces, P, may be replaced by its components.

X, =P, cosa,, Y, =P, cos B, and Z, = P, cos y,; and

zY

Fre. & e Fie. .
similarly for all the forces, so that the entire system is now
replaced by the three forces,

X = P, cos a, + P, cos a, + etc;
SY = P, cos B, + P, cos B, 4 etc;
37 = P,cos y, + P, cos y, + etc;

and finally by the single resultant
RB=yEX)y+EY)+(3Z)
Therefore, for equilibrium we must have separately,
2X=0,2Y=0,and Z=0. "
R8s position may be determined by its direction cosines, viz.,

X _3r. 3z
ma:T,mﬂ_T,cosy_Te-.

17. Conditions of Equilibrium.—Evidently, in dealing with
a system of concurrent forces, it would be a simple matter to
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rep.ace any two of the forces by their resultant (diagomal
formed on them), then to combine this resultant with a third
force, and so on until all the forces had been combiuned, the
last resultant being the resultant of the whole system. The
foregoing treatnent, however, is useful in showing that for
equilibrium of concurrent forces in a plane only two conditions
are necessary, viz.,, 2X = 0 and 2 Y = 0; while in space
there are three, ZX =0, 2 Y = 0, and £Z = 0. In Case I.,
then, we have conditions enough for determining two unknown
quantities ; in Case IIL., three. —

18. Problems involving equilibrium of concurrent forces.
(A rigid body in equilibrinmn under no more than three forces
may be treated as a material point, since the (two or) three
forces are necessarily concurrent.)*

ProsLEM 1.—A body weighing & 1bs. rests on a horizontal
table: required the pressure between it and the table. Fig. 8.
Consider the body free, i.e., conceive all other bodies removed
(the table in this instance), being replaced Ly the

ry forces which they exert on the first body, Taking
{G the axis Y vertical and positive npward, and not
O+-{-+X assuming in advance either the amount or direc-
I%N tion of XV, the pressure of the table against the
ol s body, but knowing that @, the action of the earth
1G6. 8.

on the body, is vertical and downward, we have
here a system of concurrent forces in equilibrﬁnn, in which
the X and Y components of G are known (being 0 and —
G respectively), while those, Ny and Ny, of IV are unknown.
Putting 2X = 0, we have N; + 0 = 0;i.e., V has no hori-
zontal component, ... V is vertical. Putting T¥ = 0, we
have Ny — G = 0, .. Ny = + G; orthe vertical component
of IV, ie, IV itself, is positive (npward in this case), and is
numerically equal to G.

ProBLEM 2.—Fig. 9. A body of weight & (Ibs.) is moving
in a straight line over a rough horizontal table with a uniform
velocity v (feet per second) to the right. The tension in an
oblique cord by which it is pulled is given, and = P (1bs)),

* Three parallel forces form an exception ; see §§ 20, 21, ete.
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which remains constant, the cord making a given angle of
elevation, a, with the path of the body. Required the vertical
pressure AV (lbs.) of the table, and also its
horizontal action # (friction) (lbs.) against
the body.

Referring by anticipation to Newton’s first ~
law of motion, viz., a material point acted i
on by no force or by balanced forces is either Fia. 9.
at rest or moving uniformly in a straight line, we see that this
problem is a case of balanced forces, i.e., of equilibrinm. Since
there- are only two unknown quantities, /' and ¥, we may
determine them by the two equations of Case I., taking the
axes X and Y as before. Here let us leave the direction of
XV as well as its amount to be determined by the analysis. As
F mnust evidently point toward the left, treat it as negative in
summing the X components; the analysis, therefore, can be
expected to give only its numerical value.

ZX = 0gives P cos a — F=0. oo =P cos a.
2Y =0gives N+ Psina — G=0. .. N = G — Psin a.
~. IV is upward or downward according as G is > or < P
sina. For XV to be a downward pressure upon the body would
require the surface of the table to be above it. The ratio of the
friction # to the pressure /¥ which produces it can now be
obtained, and is called the coefficient of friction. It may vary
slightly with the velocity.

This problem may be looked upon as arising from an experi-
ment made to determine the coefficient of friction between the
given surfaces at the given uniform velocity.

19. The Free-Body Method. —The foregoing rather labored so-
lntions of very simple problems have heen made such to illus-
trate what may be called the free-body method of treating any
problem involving a body acted on by a system of forces. It
consists in conceiving the body isolated from all others which
act on it in any way, those actions being introduced as so many
forces, known or unknown, in amount and position. The sys-
tem of forces thus formed may be made to yield certain equa-
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tions, whose character and number depend on circumstances,
such as the behavior of the body, whether the forces are con-
fined to a plane or not, etc., and which are therefore theoreti-
cally available for determining an equal number of unknown
quantities, whether these be forces, masses, spaces, times, or
abstract numbers. Of course in some instances the unknown
quantities may enter these equations with such high powers
that the elimination may be impossible ; but this is a matter
of algebra, not of mechanics.

(Addendum to § 49a of page 49.) Numerieal Example.—A set of light
screens is set up at intervals of 100 feet apart in the horizontal path of a
cannon-ball, with the object of determining its velocity, and also the rate of
glfn:llllgeagr negative acceleration) of that velocity, as due to the resistance

By electrical connection the time of passing each screen is noted, and
the sntereals of time are given in this diagram for four of the screens,

A, B, 0, and D.
o100 1007 |oeeer200
...0.0821 sec. .| -0:0083 8ec...| 4 0648 gec. ..
A4 1 B 2 g 8 D

From these data it is required to compute, as nearly as the circumstances
allow, the velocity and acceleration (negative) of the ball at various points
(the ball moves from left to right).

Solution.—In passing from A to B the ball has an average velocity of
1610 ft. per second, obtained by dividing the distance of 100 feet by the
time of passage, 0.0621 second. Similarly we find the average velocity
between B and C to be 15823 ft. per second, and that between O and D to
be 1564 ft. per second.

As the velocity is not changing very rapidly, we may claim that the ball
actually possesses the velocity v, = 1610 ft. per second at the point 1, mid-
way between A and B, or very near that point ; and similarly the velocity
v, = 1582 ft. per second at point 2, midway between B and C; and
o, = 15564 ft. per second at point 8, midway between C and D.

Hence the total gain of velocity from 1 to 2 is 1582-1610 = — 28 ft. per
second; and the time in which this gain is made is one half of the 0.0621
second ptus one half of the 0.0832 second, l.e., 0.06268 second. Therefore
an approximate value for the average acceleration between points 1 and 2
is found by dividing the — 28 ft. per second gain in velocity by the
time 0.0626 second occupied in acquiring the gain. This gives — 447 ft.
per second per second average acceleration for portion 1...2 of path, and
since screen B lies at the middle of this portion, the actual acceleration of
the ball’s motion as it passes the screen B is very nearly equal to this, viz.:
— 447 ft. per second per second (or ** ft. per square second *’).

By a similar process the student may compute the acceleration at screen
C. Of course the reason why these results are merely approximate is that
the spacesand times concerned, though relatively small, are not infinitesimal.

[A recent English writer calls a unit of velocity a ‘speed ;” and a unit
of acceleration, a ““ Aurry.”]
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V)

< CHAPTER II.
PARALLEL FORCES AND THE CENTRE OF GRAVITY.

20. Preliminary Remarks.— Although by its title this section
should be restricted to a treatment of the equilibrium of forces,
certain propositions involving the composition and resolution
of forces, without reference to the behavior of the body under
their action, will be found necessary as preliminary to the prin-
cipal object in view.

As a rigid body possesses extension in three dimensions, to
deal with a system of forces acting on it we require three co-
ordinate axes: in other words, the system consiste of “ forces
in space,” and in general the forces are mon-concurrent. In
most problems in statics, however, the forces acting are in one
plane: we accordingly begin by considering non-concurrent
forces in a plane, of which the simplest case is that of two
parallel forces. For the present the body on which the forces
act will not be shown in the figure, but must be understood to-
be there (since we have no conception of forces independently
of material bodies). The device will frequently be adopted of
introducing into the given system two opposite and equal forces.
acting in the same line: evidently this will not alter the effect
of the given system, as regards the rest or motion of the body.

P P ,

81. Resultant of two Parallel —
Forces. N |
Case 1.—The two forces have g’“s - s

the same direction. Fig. 10.

Let P and Q be the given forces, =
and AB a line perpendicular to =
them (P and @ aresnpposed to have sk-C¥_is
been transferred to the intersections Fia. 10.

A and B). Put in at A and B two equal and opposite
forces 8 and 8, combining them with P and @ to form P’
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and @’. Transfer P’ and @’ to their intersection at C, and there
resolve them again into § and P, Sand @. & and § aunul each
other at C'; therefore P and ), acting along a common line CD,
replace the P and @ first given ; i.e., the resultant of the origi-
nal two forces is a force £ =P + §, acting parallel to them
through the point D, whose position must now be determined.
The triangle CAD is similar to the triangle shaded by lines,
P :8::C0D:w; and CDB being similar to the triangle
shaded by dots, .. §: @ :: a — 2 : CD.. Combining these, we
have*%:a;w and ... @ = P?:Q = _%z. Now write this
Rz = Qa, and add R, i.e., Pc- e, to each member, ¢ being
the distance of O (Fig. 10), any point in A B produced, from
A. This will give (@ + ¢) = Pc+@(a + ¢), in which ¢,
@ + ¢, and @ - ¢ are respectively the lengths of perpendiculars
let fall from O upon P, @, and their resultant 2. Any one of
these products, such as Pec, is for convenience (since products of
this form occur so frequently in Mechanics as a result of alge-
braic transformation) called the Moment of the force about the
arbitrary point 0. Hence the resultant of two parallel forces of
the same direction is eqnal to their sum, acts in their plane, in
a line parallel to them, and at such a distance from any arbi-
trary point O in their plane as may be determined by writing
its moment about O equal to the sum of the moments of the
two forces about 0. O is called a centre of moments,and each
of the perpendiculars a lever-arm.

Case II.—Two parallel forces P and @ of opposite direc-
tions. Fig. 11. By a process similar to the foregoing, we

P obtain B =P — Qand (P — Q)

o = Qa, ie., Re = Qa. Subtract

B 1 each member of the last equation

Q from Re¢ (i.e., Pc— ), in which ¢
k"P is the distance, from A, of any arbi-

o b Sl g g trary point O in A B produced. This
— k gives B¢ — &) = Pc— Qa+ o).
PorTe—at But (¢ —«), ¢, and (a+¢) are re-
Fie. 11. spectively the perpendiculars, from

# That is, the resultant of two parallel forces pointing in the same direc-
tion dividss the distance between them tn the inverse ratio of those forces,
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O, upon R, P, and @. That is, (¢ — «) is the moment of &
about O; Pc, that of P about O; and @(a+ c¢), that of @
about 0. But the moment of ¢ is subtracted from that of P,
which corresponds with ‘the fact that @ in this fignre would
produce a rotation about O oppositc in direction to that of P.
Having in view, then, this imaginary rotation, we may define
the moment of a force as posizive when the indlcated direction
about the given point is against the hands of a watch; as nega-
twe when with the hands of a watch.*

Hence, in general, the resultant of any two parallel forces is,
in amount, equal to their algebraic sum, acts in a parallel direc-
tion in the same p]ane, while its moment, about any arbitrary
point in the plane, is equal to the a]gebxzuc sum of the -mo-
ments of the two forces about the same point.

Corollary.—1If each term in the preceding moment equations
be multiplied by the secant of an angle (a, Fig. 12) thus:

Fia. 12 Fia. 18.

(using the notation of Fig. 12). we have Pa sec a = Py,
sec a + P,a,sec a,ie, Pb = Pb, + Pp, in which 3, &,
and b, are the oblique distances of the three lines of action
from any point O in their plane, and lie on the same straight
line ; P is the resultant of the parallel forces P, and P,.

22. Resultant of any System of Parallel Forces in Space.—
Let P, P,, P,, etc., be the forces of the system, and =, ¥,
2, @y Yy 2y €te., the co-ordinates of their points of application
as referred to an arbitrary set of three co-ordinate axes X, Y,
and Z, perpendicular to each other. Each force is here re

* These two directions of rotation are often called counter clockwise, and
clockwise, respectively.
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st.icted to a definite point of application in its line of action
(with reference to establishing more directly the fundamental
equations for the co-ordinates of the centre of gravity of a
body). The resultant P’ of any two of the forces, as
P, aud P,,is = P, + P,, and may be applied at C, the in-
tersection of its own line of action with a line B.D joining
the poiats of application of P, and P,, its components,
Produce the latter line to 4, where it pierces the plane XY,
and let 8,, ', and b,, respectively, be the distances of B, C,
D, from 4 ; then from the corollary of thelast article we have

Py =Pph,+ Pp,;
but from siailar triangles
b :6,:0, 12 12,12, o P2 = Pz + Pg,

Now combine P, applied at C, with P, applied at E, calling
their resultant P’ and its vertical co-ordinate z”/, and we obtain

Pz =12 4 Pg,ie., P'2" = Pz, + Pgz, + Pgz,
also
' =P 4+ P,=P+P,+P,

Proceeding thus until all the forces have been considered, we
ghall have finall 7, for the resultant of the whole system,

R=P,+ P,+ P, + ete.;
and for the ve.tical co-ordinate of its point of application,
which we may arite 2,

Rz= Pz + Pgz,+ Pz2,+etc;

- P2+P2+Pz . 2(P2) .

Loy & PP AP F.... =P
and similarly {sr the other co-ordinates.
- _ =Z(Pa) - Z(Py)
v="75p mdy="—3p"

In these eqnations, in the general case, such products as P,s,,
etc., cannot strictly be called moments. The point whose co-
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ordinates are the z, y, and z, just obtained, is called the Centre
of Parallel Forces, and its position is independent of the {com-
mon) direction of the forces concerned.

Example—If the parallel forces are contained in one plane,
and the axis ¥ be assumned parallel to the direction of the
forces, then each product like P, will be a moment, as de-
fined in § 21; and it will be noticed in the accompanying nu-
merical example, Fig. 14, that a detailed substitution in the

equation : Rop Y f B
Be= Pg,+ Px,+ete, . . .(1) Is j__ a—~--—-]
having regard to the proper sign of each 1} 49: +X

force and of each abscissa, gives the same Fio. 14,

result as if each product Pz were first obtained numerically,
and a sign affixed to the product considered as a moment
abont the point 0. Let P,= —11b; P, =+ 21bs.; P, =
+3lbs; P,=—~6lbs;o, =+ 1ft; 2,= +3ft;o,= — 2
ft.; and , = — 1 ft. Required the amount and position of the
resultant Z. Inamomnt R =3P =—14248—6=—2
Ibs.; i.e., it is a downward force of 21bs. As to its position,
Rz = 3(Pz) gives (— 2z =(— 1) X (+1)+2 X 3+
IX(—2)+(—6)X(—1)=—146—6+6. Now from
the figure, by inspection, it is evident that the moment of P,
about O is negative (with the hands of a watch), and is numer-
iaally = 1, i.e., its moment = — 1; similarly, by inspection,
that of P, is seen to be positive, that of P, negative, that of
P, positive; which agree with the results just found, that
(—22z=—14+6—646=-5ft. lbs. (Since a moment
is a product of a force (Ibs.) by a length (ft.), it may be called
s0 many foot-pounds.) Next, solving for z, we obtain
z = (+5) + (— 2) = — 2.5 ft; i.e., the resultant of the given
forces is a downward force of 2 lbs. acting in a vertical line
2.5 ft. to the left of the origin. Hence, if the body in question
be a horizontal rod whose weight has been already included in
the statement of forces, a support placed 2.5 ft. to the left of
0 and capable of resisting at least 2 1bs. downward pressure
will preserve equilibrium ; and the pressure which it exerts
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against the rod must be an upward force, P,, of 2 lbs., ie. ..e

equal and opposite of the resultant of P, P,, P,, P..
Fig. 15 shows the rod as a free body in equilibrium under
the five forces. P, = + 21bs. = the reaction of the support.
Of conrse P;is one of a pair of equal

‘f‘ le f P’I and opposite forces; the other one

o — is the pressure of the rod against the
R F—2s—o support,and would take its place among
Fre.15. the forces acting on the support.

23. Centre of Gravity.—Among the forces acting on any
rigid body at the surface of the earth is the so-called attraction
of the latter (i.e., gravitation), as shown by a spring-balance,
which indicates the weight of the body hung upon it. The
weights of the different particles of any rigid body constitute a
system of parallel forces (practically so, though actually slightly
convergent). The point of application of the resultant of these
forces is called the centre of gravity of the body, and may also
be considered the centre of mass, the body being of very small
dimensions compared with the eartl’s radius.

If @, y, and 2 denote t ogglinates of the centre of gravity
of a body referred” to three co-ordinate axes, the equations
derived for them in § 22 are directly applicable, with slight
changes in notation.

Denote the weight of any particle of the body by d@, its
volume by &V, by y its Aeaviness (rate of weight, see § 7) and
its co-ordinates by @, y; and z; then, using the integral sign as
indicating a summation of like terms for all the particles of the
body, we have, for heterogeneous bodies,

E_fyde_ - _JyydV - _JyadV
= Jyav’ Y= Sya v’ 2= /'}’_d?’ < - (D
while, if the body is homogeneous, y is the same for all its ele-
ments, and being therefore placed outside the sign of summa-

tion, is cancelled out, leaving for komogeneous bodies (V de-
noting the total volume)

- - iV
=" Y =" andz:'/zv.,, NE))
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Corollary.—1t is also evident that if a homogeneous body is
for convenience considered as made up of several finite parts,
whose volumes are V,, V,, etc., and whose gravity co-ordinates

are @,, Yy, 3,3 @y Yn 2, etc., we may write

Ve, + Vet . ..
FETE - @

If the body is heterogeneous, put &, (weights), ete., instead
of V,, ete., in equation (3).

If the body is an infinitely thin Aomogeneous shell of uni-
form thickness = A, then @ V' = AdF'(dF denoting an element,
and F the whole area of one surface) and equations (2) become,
after cancellation,

- fedF - dF - 2dF
m:‘/—-p-,—; y:‘&—ﬁ,—; 2=‘/—"F—,—.. « e (4)

Similarly, for a Aomogeneous wire of constant small cross-
eection (i.e., a geometrical line, having weight), its length
being &, and an element of length ds, we obtain

- xds — [yds — _ [zds
w=ia—; y=‘/—%—; z=‘/‘T. N ()]

It is often convenient to find the centre of gravity of a thin
plate by experiment, balancing it on a needle-point; other

shapes are not so easily dealt with.

24. Symmetry.—Considerations of symmetry of form often
determine the centre of gravity of homogeneous solids without
analysis, or limit it to a certain line or plane. Thus the centre
of gravity of a sphere, or any regular polyedron, is at its centre
of figure ; of a right cylinder, in the middle of its axis; of a
thin plate of the form of a circle or regular polygon, in the
centre of figure; of a straight wire of uniform cross-section, in
the middle of its length.

Again, if a homogeneous body is symmetrical about a plane,
the centre of gravity must lie in that plane, called a plane of
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gravity ; if about a line, in that line called a line of gravity ;
if about a point, in that point.

25. By considering certain modes of subdivision of a homo-
geneous body, lines or planes of gravity are often made appar-
ent. E.g., a line joining the middle of the bases of a trape-
zoidal plate is a line of gravity, since it bisects all the strips
of uniform width determined by drawing parallels to the
bases ; similarly, a line joining the apex of a-triangular plate to
the middle of the opposite side is a line of gravity. Other
cases can easily be suggested by the student.

A

26. Problems.—(1) Reqnired the position of the centre of
A gravity of a fine homogeneous wire of the
- Nay Jormof a cireular arc, A B, Fig. 16. Take
i the origin O at the centre of the circle, and
the axis X bisecting the wire. Let the
dyj i length of the wire, 8 = 2s,; ds = ele-
¢ /4  mentofarc. We need determine only the
? z, since evidently y = 0. Equations (5),

Fia. 16. § 283, are applicable here, i.e., # = l::_da'

From similar triangles we have

ds:dy i r:w;.o.ds=—%;

o =2% -/1/‘ :dg;-? 22—7:%, i.e.,, = chord X radius = length of
wire. For a semicireunlar wire, this reduces to z = 2 + =.
ProsLEM 2. Centre of gravity of trapezoidal (and triam-
gular) thin plates, homogeneous, etc.—Prolong the non-parallel
sides of the trapezoid to intersect at O, which take as an origin,
making the axis X perpendicular to the bases d and 3, We
may here use equations (4), § 23, and may take a vertical strip
for.our element of area, d, in determining @; for each point
of such a strip has the same z. Now dF = (y + y')dz, and
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from similar trisngles y + ' = 5 @, Now 7, = 5 (b — bh),

can be written %2 * — A%, and » = L ;,dF becomes

___B’T.A:h w’da:]-:—%—%(h’—h,')=§;::—:%:-:

for the trapezoid.

gh; that is, the

centre of gravity of a triangle is one third the altitude from the
base. The centre of gravity is finally determined by knowing

For a triangle 2, = 0, and we have # =

v
oy [b
b
(o} iy
\L .;ul
v
Fra. 17.

that a line joining the middles of 4 and 3, is a line of gravity;
or joining O and the middle of & in the case of a triangle.

ProsLEM 3. Sector of a circle. Thin plate, etc.—Let the
notation, axes, etc., be as in Fig. 18. Angle of sector = 2a;
z =1 Using polar co-ordinates, the element of area dF (a
small rectangle) = pdg . dp, and its @ = p cos @; hence the
total area =

F=‘/:l:‘/:;)dp d¢='/1_+:%r’d<p=g ;:‘,

i.e, F=7a. From equations (4), § 23, we have

= -}f‘/‘cos pp'dpdp = %/:T[cos q)l/.‘;)’dp] do.
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(Note on double integration.—The quantity
l:cos P ‘/.‘;z' dp]dw,

is that portion of the summation f f cos @p'dpde which

belongs to a single elementary sector (triangle), since all its
elements (rectangles), from centre to circumference, have the

same @ and dg.)
That is,
- "1 9 pte r [ £ 2 reina
=73/ 8 plp=g |snp=3.-"7;

or, putting 8 = 2a = total angle of sector,z = g )

For a semicircular plate this reduces to @ = ;—;

[&Vote.—In numerical substitution the arcs « and £ used

above (unless sin or cos is prefixed) are understoodto be ex-

pressed in circular neasnre (7-measure); e.g., for a quad-
w

rant, 8 = g = 1.5707 4 ; for 30°, 8 = g3 on in general, if 8

180°
in degrees = ——, then £ in 7-measure = :—:]

ProeLEM 4. Sector of a flat ring; thin
plate, etc.—Treatment similar to that of
Problem 8, the difference being that the

41
limits of the interior integrations are L
]

instead of [: Result,

r' sin 36

— r’.
) r = 7‘:’ ﬂ

o]
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ProBLEM 5.—Segment of a circle; thin plate, ete.—Fig. 20.
Bince each rectangular element of any ver- % %

tical strip has the same 2, we may take the ‘V Pa
strip a8 dF in finding @, and use y as the 7 |
half-height of the strip. dF = 2ydz, and 0¥
from similar triangles @ :y :: (—dy) : dor, X

i.e, wde = — ydy. Hence from eq. (4
§ 28, ™ - N/

Fi1o. 20,
JedF _ fodyde — y'dy _ 2 z _2 a
F =F =—7F “—sp{~-N=3F

T =

but @ = the half-chord, hence, finally, @ = %)—

ProBLEM 6.—Trapezoid; thin plate, ete.,
by the method in the corollary of § 23; equa-
tions (3). Required the distance « from the
base AB. Join DB, thus dividing the trape-

} zoid ABCD into two triangles ADB = F,

Cad

and DBC = F,, whose gravity «’s are, re-
spectively, , = 4% and 2, = §4. Also, F,
= §4b,, F, = §kb,, and F (area of trape-
zoid) = $A(3, 4 b,). Eq. (8) of §23 gives
Fz z = Fw, + Fg,; hence,substituting,(5, +
3 b) &= b + B.h.

b @, + %,
36,15

The line joining the middles of &, and b, is a line of gravity, and
is divided in such a ratio by the centre of gravity that the fol-
lowing construction for finding the latter holds good : Prolong
each base, in opposite directions, an amount eqnal to the other
base; join the two points thus found: the intersection with
the other line of gravity is the centre of gravity of the trape-
zoid. Thus, Fig. 21, with BE =, and DF = b, join FE,

ete.

S =
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Prosurm 7. Homogeneous oblique cone or pyramid.—
Take the origin at the vertex, and the axis X perpendicular to
the base (or bases, if a frustum). Iu finding Z we may put
dV = volume of any lamina parallel to YZ, ¥ being the base
of such a lamina, each point of the lamina having the same a.
Hence, (equations (2), § 23),

= g fedV, V=[dV=[Fis;

but
. F,
F:F a4 ~F=3a,
and
V=" pran = 1[5 5 odV=Fopsia= =%
i} E =i

_3 A=A

For a frustum, iy while for & pyramid, 4,, be-

ing =0,z = gk. Hence the centre of gravity of a pyramid

is one fourth the altitude from the base. It also lies in the line
joining the vertex to the centre of gravity
of the base.

ProsLEm 8.—If the heaviness of the ma-
terial of the above cone or pyramid varied
directly as @, y, being its heaviness at the
base F;, we wonld use equations (1), § 23,

putting y = Il;-’-w; and finally, for the frustum,
2

- 4
and for a complete cone @ = 3 A,

27. The Centrobaric Method. —If an elementary area dF be
revolved about an axis in its plane, throngh an angle @ < 27,
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the distance from the axis being = 2, the volume generated is
4V = axdF, and the total volnme generated by all the dF”s
of a finite plane fignre whose plane con- ,,,
tains the axis and which lies entirely on one |
side of the axis, will be V = fdV =
afzdF. But from § 28, afwdF = aFx;
az being the length of path described by
the centre of gravity of the plane figure, Fro. 3.
we may write: The volume of a solid of revolution generated
by a plane figure, lying on one side of the awis, equals the
area of the figure multiplied by the length of curve described
by the centre of gravity of the figure.

A corresponding statement may be made for the surface
generated by the revolution of a line. The arc @ must be ex-
pressed in # measure in numerical work.

27a. Centre of Gravity of any Quadrilateral. —Fig. 23a.

: g Construction; ABGD being any quad-
rilateral. Draw the diagonals. On the
long segment DK of DB lay off DE =
BK, the shorter, to determine £'; simi-
larly, determine &V on the other diagonal,
s Ly making G&N = AK. Bisect ZK in H
and XN in M. The intersection of EM

Fio. Ba- and VH is the centre of gravity, C.

Progf —H being the middle of DB, and AH and HG
having been joined, I the centre of gravity of the triangle
ABD is found on A H, by making HI = {4 H ; similarly, by
making HL = $HG@, L is the centre of gravity of triangle
BDG@. .-.ILis parallel to AG and is a gravity-line of the
whole figure ; and the centre of gravity ' may be found on it
if we can make OL: O :: area ABD : area BDG (§ 21).
But since these triangles have a common base DB, their areas
are proportlonal to the slant heights (equally inclined to DB)
AK and KG,ie,to GN and NA. Hence AN, which di-
vides 7L in the required ratio, contains () and is .*. a gravity-
line. By similar reasoning, using the other diagonal, 4@, and
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the two triangles into which it divides the whole figure, we
may prove EM tobe a gravity-line also. llence the construc-
tion is proved.

27b. Examrres.—1. Required the volume of a sphere by
the centrobaric method.

A sphere may be generated by a semicircle revolving about
its diameter through an arc @ = 2x. - The leugth of the path

described by its centre of gravity is = 2#% (see Prob. 3, §
26), while the area of the semicircle is §ar'. Hence by § 27,

4" L 4 L
Volume generated = 2x . 3t =gt

2. Required the position of the centre of gravity of the sector
of a flat ring in which », = 21 feet, #, = 20 feet, and g = 80°
(see Fig. 19, and § 26, Prob. 4).

sin g: sin 40° = 0.64279, and g in ciroular measure =

1%06 T= % 7 = 1.3962. By using », and 7, in feet, » will be

obtained in feet.

1261 0.64279
41 ° 1.3962

- 4 7 4
"w=_3-'r'—r.' . ﬂ = §'o =18-87feet0

A
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CHAPTER IIL
STATICS OF A RIGID BODY.

28. Couples.—On account of the peculiar properties and
utility of a system of two equal forces acting in parallel lines
and in opposite directions, it is specially
considered, and called a Couple. The
arm of a couple is the perpendicular
distance between the forces ; its moment,
the product of this arm, by one of the 4
forces. The axis of a couple is an
imaginary line drawn perpendicular to Fra. o4
its plane on that side from which the rotation appears positive
(against the hands of a watch). (An ideal rotation is meant,
suggested by the position of the arrows; any actual rotation
of the rigid body is a subject for future consideration.) In
dealing with two or more couples the lengths of their axes are
made proportional to their moments; in fact, by selecting a
proper scale, numerically equal to these moments. E.g.,in Fig.
24, the moments of the two couples there shown are Pa and
@b; their axes p and ¢ so laid off that Pa : @b :: p: ¢, and
that the ideal rotation may appear positive, viewed from the
outer end of the axis.

29. No single force can balance a couple.—For suppose the
couple P, P, could be balanced by a force &', then this, acting
at some point C, ought to hold the couple

D%.s_._‘ 3 B in equilibrinm. Draw CO through O, the
it gt centre of symmetry of the couple, and
Fie. 8. make 0D = OC. At D put in two op-

posite and equal forces, § and 7 equal and parallel to R’.
The supposed equilibrinm is undisturbed. But if R’, P, and
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P are in equilibrinm, so ought (by symmetry about 0) S, P,
and 2P to be in equilibrium, and they may be removed without
disturbing equilibrium. But we have left 7’and &', which are
evidently not in equilibrium; .. the proposition is proved by
this reductio ad absurdum. Conversely a couple has no single
resultant.

80. A couple may be transferred anywhere in its own plane.
—First, it may be turned through any angle a, about any

Py point of its arin, or of its arm produced.

Gn: ------ S f Let (£, P’)be a couple, & any point of its
".;...A?Rq;‘ ¥ arm (produced), and a any angle. Make
.. | G@C=GA,CD = AB, and put inat C,
;;c“‘P, '\.\ ! P, and P,equal to P (or P’), opposite to

‘Q_\.,.. 11 Teach other and perpendicular to ¢C; and

R P, and P, similarly at . Now apply and

Fia. 2. combine P and P, at O, P’ and P, at O’;

then evidently & and &’ neutralize each other, leaving £, and

P, equivalent to the original couple (2, P’). The arm

CD = AB. Secondly, if @ be at infinity, and @ = 0, the

same proof applies, i.e.,, a couple may be moved parallel to

itself in its own plane. Therefore, by a combination of the

two transferrals, the proposition is established for any trans.
ferral in the plane.

81. A couple may be replaced by another of equal moment
n a parallel plane.—Let (P, P')be a couple. Let CD, in a
parallel plane, be parallel to AB. At D put in a pair of equal

and opposite forces, S, and §,, parallel to 2 and each = %
Similarly at €, S, and 8, parallel to P and each = oo

Baut, from similar triangles,

AE BE
=F0 S =8=8=5
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[Nore.—The above values are so chosen that the intersection point B
may be the point of application of (P - &,), the resultant of P and S,;
and also of (P Ss), the resultant of Pand S,, as follows from § 21; thus
(Fig. 28), R, the resultant of the two parallel forces Pand &, is = P4 5,,
and its moment about any centre of moments, as B, its own point of ap-
plication, should equal the (algebraic) sum of the moments of its com-

— J— Al
pouents about X; i.e., R X zero=P,. AKX — 8. DE;.". & = ﬁ P]

P'+S,) D E
Fia. 27. Fia. 28,

Replacing P’ and 8, by (P’ + 8,), and P and 8, by
(P + 8,), the latter resultants cancel each other at Z, leaving
the couple (8, §,) with an arm CD, equivalent to the original

couple P, P’ with an arm AB. But,eince S, = % P=
%g .P,wehave §,X CD = PXAB; that is, their moments
are equal.

32. Transferral and Transformation of Couples.—In view of
the foregoing, we may state, in general, that a couple acting on
a rigid body may be transferred to any position in any parallel
plane, and may have the values of its forces and arm changed
in any way so long as its moment is kept unchanged, and still
have the same effect on the rigid body (as to rest or motion,
not in distorting it).

Corollaries.—A couple may be replaced by another in any
position 8o long as their axes are equal and parallel and simi-
larly sitnated with respect to their planes.

A couple can be balanced only by another couple whose axis
is equal and parallel to that of the first, and dissimilarly situ-
ated. For example, Fig. 29, Pa being = @b, the rigid body
AB (here supposed withont weight) is in equilibrium in each
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case shown. By “reduction of a couple to a certain arm a”
is meant that for the original couple whose arm is a’, with
forces each = P, a new couple is substituted whose arm shall
be = @, and the value of whose forces 2 and P must be com-
puted from the condition

< )

33. Composition of Couples. —Let (£, P’) and (@, ") be two
couples in different planes reduced to the same arm AB = a,
which is a portion of the line of intersection of their planes.
That is, whatever the original values of the individual forces
and arms of the two couples were, they have been transferred
and replaced in accordance with § 82, so that P. AB, the
moment of the first couple, and the direction of its axis, p,
have remained unchanged; similarly for the other couple.
Combining P with @ and P’ with @', we have a resultant
couple (R, R') whose arm is also AB. The axes p and ¢ of
the component couples are proportional to 2. AB and Q. AB,
i.e., to P and @, and contain the same angle as 2 and Q.
Therefore the parallelogram p... ¢ is similar to the parallelo-
gram P ... Q; whence p:g:rii:P:Q: R, orp:g:r::
Pa: Qa: Ra. Alsor is evidently perpendicular to the plane
of the resultant couple (&, R’), whose moment is Ra. Hence
7, the diagonal of the parallelogram on p and ¢, is the axis of
the resultant couple. To combine two couples, therefore, we
have only to combine their axes, as if they were forces, by a
parallelogram, the diagonal being the axis of the resultant
couple; the plane of this couple will be perpendicular to the
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axis just found, and its moment bears the fame relation to the
moments of the component couples as the diagonal axis to the
two component axes. Thus, if two couples, of moments Pa
and @b, lie in planes perpendicular to each other, their result-

ant couple has a moment Be = y/{Pa) + (Qb)"

If three couples in different planes are to be combined, the
axis of their resultant couple is the diagonal of the parallelo-
piped formed on the axes, laid off to the same scale and point-
ing in the proper directions, the proper direction of an axis
being away from the plane of its couple, on the side from
which the couple appears of positive rotation.

84. If several couples lie in the same plane their axes are
parallel and the axis of the resultant couple is their algebraic
sum ; and a similar relation holds for the moments: thus, in
Fig. 24, the resultant of the two couples has a mnoment = @b
— Pa, which shows us that a convenient way of combining
couples, when all in one plane, is to call the moments positive
or negative, according as the ideal rotations are against, or with,
the hands of a watch, as seen from the same side of the plane;
the sign of the algebraic sum will then show the ideal rotation
of the resultant couple.

85. Composition of Non-concurrent Forces in a Plane.—Let
P, P, ete., be the forces of the system ; @,, y,, @,, ¥,, etc., the

Y \§ R
ay
X Ay
7
Y ‘XL/ yp x
Ll o "/
/"
L Y,
o. 81. Fia. 82

co-ordinates of their points of application; and «,, «,, . . . ete.,
their angles with the axis X. Replace P, by its components
X, and Y, parallel to the arbitrary axes of reference. At the
origin put in two forces, opposite to each other and equal and
parallel to X, ; similarly forY,. (Of course X, = P, cos « and
Y, = P, sin a.) We now have P, replaced by two forces X,
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and Y, a¢ the origin, and two couples, in the same plane, whose
moments are respectively — X,y, and 4 Yz, and are the.re-
fore (§ 34) equivalent to a single couple, in the same plane with
a moment = ( Y,z,— X y.).

Treating all the remaining forces in the same way, the whole
system of forces is replaced by

the force Z(X) =X, + X, + ... at the origin, along the axis X;
the force 3(¥) = ¥,4- Y, +...at the origin, along the axis Y;

and the couple whose mom. @ = = ( ¥z — Xy), which may be
called the couple C (see Fig. 32), and may be placed anywhere

in the plane. Now 3(X)and =(Y) may be combined into a
force R; i.e.,

R =4#(2X) + YY) and its direction-cosine is cos @ = —21‘—;17
Since, then, the whole system reduces to €' and X, we must
have for equilibrium R = 0,and ¢ =0; i.e., for equilibrium
2X=0,2Y=0,and Z(Yz—Xy)=0. . eq. (1)

If R alone = 0, the system reduces to a couple whose mo-
ment is ¢ = Z(Y2—Xy); and if G alone = 0 the system re-
duces to a single force 12, applied at the origin. If,in general,
neither & nor G = 0, the system isstill equivalent to a single
force, but not applied at the origin (as could hardly be ex-
pected, since the origin is arbitrary); as follows (see Fig. 33):
Replace the couple € by one of equal moment, @, with each

force = R. Its arm will therefore be %— Move this couple

in the plane so that one of its forces &2 may cancel the R al-
ready at the origin, thus leaving a single resultant 2 for the
whole system, applied in a line at a perpendicular distance,

c= %, from the origin, and making an angle « whose cosine =

% with the axis X.

86. More convenient form for the equations of eqllilibr{nm
of non-concurrent forces in a plane.—In ¥1), Fig. 34, O being
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any point and @ its perpendicular distance from a force P;
put in at O two equal and opposite forces £ and P’ = and ||

to P, and we have P replaced by an equal single force P’ at
0, and a couple whose moment is 4+ Pa. (II.) shows a simi-
lar construction, dealing with the X and ¥ components of P,
8o that in (IL.) 2 is replaced by single forces X’ and ¥’ at O

LS
y, Ve gtiX
%a o] v
A X L X
(L) Y (1L)
Fia. 83, Fia. 84,

(and they are equivalent to a resultant /', at O, as in (I.), and
two couples whose moments are 4 Y and — Xy.

Hence, O being the same point in both cases, the couple Pa
is equivalent to the two last mentioned, and, their axes being
parallel, we must have Pa = Y2 — Xy. Equations (1),
§ 35, for equilibrium, may now be written

ZX=0,2Y=0,and Z(Pa)=0 . . (2

In problems involving the equilibrium of non-concurrent
forces in a plane, we have thres independent conditions, or
equations, and can determine at most three unknown quantities.
For practical solution, then, the rigid body having been made
Jree (by conceiving the actions of all other bodies as repre-
sented by forces), and being in equilibrium (which it must be
if at rest), we apply equations (2) literally ; i.e., assuming an
origin and two axes, equate the sum of the X components of
all the forces to zero; similarly for the Y components; and
then for the “moment-equation,” having dropped a perpen-
dicular from the origin mpon each force, write the algebraic
sam of the products (moments) obtained by multiplying each
force by its perpendicular, or “lever-arm,” equal to zero, éall-
ing each produmet - or — according as the ideal rotation ap-
pears against, or with, the hands of a watch, as seen from the
same side of the plane. (The converse convention would do as
well.)
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Sometimes it is convenient to use three moment equations,
taking a new origin each time, and then the ZX = 0and 2 Y
= 0 are superfluous, as they would not be independent equa-
tions.

87. Problems involving Non-conourrent Forces in a Plane.—
Remarks. The weight of a rigid body is a vertical force
through its centre of gravity, downwards.

If the surface of contact of two bodies is smooth the action
(pressure, or force) of one on the other is perpendicular to the
surface at the point of contact. If a cord must be imagined
cut, to make a body free, its tension must be inserted in the
line of the cord, and in such a direction as to keep faut the
small portion still fastened to the body. In case the pin of
a hinge must be removed, to make the body free, its pressure
against the ring being unknown in direction and amount, it is
most convenient to represent it by its unknown components X
and Y, in known directions. In the following problens there
is supposed to be no friction. If the line of action of an un-
known force is known, but not its direction (forward or back
ward), assume a direction for it and adhere to it in all the three
equations, and if the assumption is correct the value of the
force, after elimination, will be positive ; if incorrect, negative.

Problem 1.—Fig. 35. Given an oblique rigid rod, with two
loads @, (its own weight) and G,; required the reaction of the
smooth vertical wall at 4, and the direction and amount of the

hinge-pressure at 0. The reaction at A4
must be horizontal ; call it X’. The pres-
sure at O, being unknown in direction, will
have both its X and ¥ components un-
- known. The three unknowns, then, are
X, X’y and Y,, while @, G,, a,, a,, and
h are known. The figure shows the rod
as a free body, all the forces acting on it
have been put in, and, since the rod is at rest, constitute-a sys-
tem of non-concurrent forces in a plane, ready for the condi-
tions of equilibrium. Taking origin and axes as in the figure.

Fia, 85.
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ZX=0givs + X, — X' =0; Y =0gives+ ¥, — G,
= G, = 0; while 2Z(Pa) = 0, about O, gives + X'h —
Ga, — Ga, = 0. (The moments of X, and Y, about O
are, each, = zero.) By elimination we obtain ¥, = @, 4
G,; X, =X = [Ga, + Ga,] + k; while the pressure at
0= vX'+ Y,’, and makes with the horizontal an angle
whose tan = ¥, + X,.

[N.B. A special solution for this problem consists in this, tha.t the result-
ant of the two known forces (¢, and G, intersects the line of X in a point .
which is easily found by § 21. The hinge-pressure must pass through this
pomt. since three forces in equilibrium must be concurrent.]

We might vary this problem by limiting X" to a safe value, -
depending on the stability of the wall, and making £ an un-
known. The three unknowns would then be X,, ¥, and A.

Problem 2.—Given two rods with loads, three hinges (or-
“pin-joints”), and all dimensions: required the three hmge-'

LY

Fia. 86. Fio. 7.

pressures; i.e., there are six unknowns, viz., three X and three
Y components..- We obtain three equations from each of the
two free bodies in Fig. 87. The student may fill out the de-
tails. Notice the application of the principle of action and
reaction at B (see § 3).

LProblem 38.—A Warren bridge-truss rests on the horizontal
smooth abutment-surfaces in Fxg 88. It is composed of equal
idosceles triangles ; no piece is D IR
continnons beyond a joint, each - D
of which is a pin connection. All
loads are considered as acting at Q&=
the joints, so that each piece will d' ! E
be subjected to a simple tension Fio. 85.
or compression.
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First, required the reactions of the supports ¥V, and V,;
these and the loads are called the ewternal forces. Z(Pa)
about O = 0 gives (the whole truss is the free body)

V3as — P,.4a — P,.3a — P,.§a = 0;
while =(Pa) about K = 0 gives

— V,.8a+ P,.%a + Pja + Pja = 0;
= V=38P, + 3P, + P];
and V, = {[P, + 3P, + 5P,).

Secondly, required the stress (thrust or pull, compression or
tension) in each of the pieces 4, B, and C'cut by the imaginary
line DE. The stresses in the pieces are called internal forces.
These appear in a system of forces acting on a free body only
when a portion of the truss or frame is conceived separated
from the remainder in such a way as to expose an internal
plane of one or more pieces. Consider as a free body the por-
tion on the left of DX (that on the right would serve as well,

I8 odB but the pulls or thrusts in 4, B, and

- 7 —2- (' would be found to act in directions

opposite to those they have on the’

other portion ; see § 3). Fig. 39. The

/ o arrows (forces) 4, B, and C are not

p40—  «—a—— pointed yet. They, with V,, P, and

Fia. 30. P, form a system in equilibrinm.
S(Pa)about O = 0 gives

(4%) — V:2a+ P,.§a+ P,.a = 0.

Therefore the moment (44) = $a[4V, — 8P, — P,], which
is positive, since (fromn above) 4V, is > 3P, 4 P,. Hence
A must point to the left, i.e., i8 a thrust or compression, and is

57 [4V, — 8P, — P}

Similarly, taking moments about O,, the intersection of 4
and B, we have an equation in which the only unknown is C,

viz., (Ch) — V§a + Paa = 0. .. (Ck) = }a[3V, — 2P,
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a positive moment, since 3 ¥, is >2P, ; .. C mus: point te the
right, i.e., is a tension, and = %[3 V,—2P].

Finally, to obtain B, put Z(vert. comps.) = 0; i.e.\5 cvs @)
4+V,—P,—P,=0. ..Besg=P + P, —V,; but
(see foregoing value of V) we may write

Z= (-P|+-P:)_ (*P1+'&-Pl)+'}Pl'
. B cos ¢ will be 4 (upward) or — (downward), and B will
be compression or tension, as ., is < or > [$P,+4P,].

B[P+ P.—V]+emp="2"01p P 7

Problem 4.—Given the weight @, of rod, the weight @,
and all the geometrical elements (the student will assume a

convenient notation); required the tension in the cord, and the
amount and direction of pressure on hinge-pin.

Problem 5.—Roof-truss; pin-connection ; all loads at joints;
wind-pressures W aud 1, normal to OA ; required the three
reactions or supporting forces (of the two horizontal surfaces
and one vertical surface), and the
stress in each piece. All geomet-
rical elements are given; also P,

P, P, W (Fig. 40).

38. Composition of Non-concur-
rent Forces in Space.—Let P, P,
ete., be the given forces, and 2, ¥,
2, By, Yu 2y €te., their points of ap-
plication referred to an arbitrary
origin and axes; a, B, ¥, etc,
the angles made by their lines of application with X. ¥, and Z.
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Comsidering. the. first force P,, replace it'by its three com.
ponents parallel to the axes, X, = P, cos a,; ¥, = P, cos £,;
and Z, = P, cos y, (P, itself is not shown in tlie figure). - At
O, and also. at A4, put a pair of equal and opposite forces,
each equal and parallel to Z; Z is now replaced by a single
force Z, acting upward at the origin, and two couples, one
in a plane parallel to Y'Z and having a moment = — Zyy, (as
we see it looking toward O from a remote point on the axis
-+ X)), the other in a plane parallel to XZ and having a mo-
ment = - Zz, (seen from a remote point on the axis 4 ¥").
Similarly at O and C put in pairs of forces equal and parallel
to X, and we have X, at B, replaced by the single force X,
at the origin, and the couples, one in a' plane parallel to XY,
and -having-a moment 4 X,y,, seen from a remote point on
the axis 4 Z, the other in a plane parallel to XZ, and of a
moment =—X,z,, seen from a remote point on the axis 4 ¥;
and finally, by a similar device, Y, at B is replaced by a force
Y -at the origin and two couples, parallel to the planes XY
and YZ, and having moments — Y &, and 4 Y.z, respective-
ly. (In Fig. 42 the single forces at the origin are broken
lines, while the two forces constituting any one of the eix
couples may be recognized as being
equal and parallel, of opposite di-
rections, and both continuous, or
both dotted.) We have, therefore,
replaced the force P, by three
forces X,, ¥,, Z, at O, and six
couples (shown more clearly in
Fig. 43; the couples have been
transferred to symmetrical posi-
tions). Combining each two couples

Flo. 43, whose axes are parallel to X, ¥,
or Z, they can be reduced to three, viz.,

one with an X axis and a moment = Yz, — Zy,;
one with a Y axis and a moment = Zz, — X,2,;
one with a Z axis and a moment = Xy, — Y2,
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Dealing with each of the other forces P,, P,, etc., in the same
manner, the whole system may finally be replaced by three
forces 2X, 2 Y, and 2Z, at the origin and three couples
whose moments are, respectively,

L = Z(Yz — Zy) with its axis parallel to X ;
M = Z(Zz — Xz) with its axis parallel to X';
N = 3(Xy — Y=) with its axis parallel to Z.

The “axes” of these couples, being parallel to the respective
co-ordinate axes X, Y, and Z, and proportional to the mo-
ments Z, M, and N, respectively, the axis of their resultant
C, whose moment is ¢, must be the diagonal of a parallelo-
pipedon constructed on the three component axes (propor-
tional to) Z, M, and N. Therefore, G = ¥I' + M + NV,
while the resultant of =X, 2 Y, and 2Z is

R=VEXTF )+ G2y
acting at the oriéin. If a, B, and y are the direction-angles

= ) >Y
of R, we have cos a = TX’ cos B = T&f}’ and cos y = ETzZ;

while if A, u, and » are those of the axis of the couple C, we
have cos }\=ﬁ, cosy:%;[, andcosv:i(r-,.
For equilibrium we have both ¢ = 0 and R = 0; i.e,,
separately, 8iz conditions, viz.,
2X=0,2Y=0,22=0; and L=0, =0, N=0 . (1)
Now, noting that 2X = 0, 2Y¥ = 0, and Z(Xy — ¥z) = 0
are the oonditions for equilibrium of the system of non-concur-
rent forces which would be formed by projecting each force of
our actual system upon the plane XY, and similar relations
for the planes Y'Z and XZ, we may restate equations (1) in
another form, more serviceable in practical problems, viz. :
Note.—If a system of non-concurrent forces in space is in
equilibrium, the plane systems formed by projecting the given
system upon each of three arbitrary co-ordinate planes will each
be in equilibrium. But we can obtain only six independent
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equations in any case, available for six unknowns. If R alone
= 0, we have the system equivalent to a couple C, whose
moment = & ; if & alone = 0, the system has a single re-
sultant /2 applied at the origin. In general, neither 2 nor &
being = 0, we cannot further combine 22 and C (as was done
with non-concurrent forces in a plane) to produce a single re-
sultant unless & and C are in the same plane; i.e., when the
angle between R aud the axis of ('is = 90°. Call that angle
6. If, then, cos 6 = cos a cos A + cos B cos u -+ cos y cos ¥
is = 0 = cos 90°, we may combine R and C to prodnce a
single resultant for the whole system; acting in a plane con-
taining & and parallel to the plane of C in a direction parallel

. . G ..
to R, at a perpendicular distance ¢ = B from the origin and

= R in intensity. The condition that a system of forces in
space have a single resultant is, therefore, substituting the
previously derived values of the cosines,(ZX). L+ (ZY). M
+ (ZZ). N =0.

This includes the cases when R is zero and when the system
réduces to a couple.

To return to the general case, £ and C not being in the
same plane, the composition of forces in space cannot be
further simplified. Still we can give any value we please to
P, one of the forces of the couple C, caleulate the correspond-

ing arm @ = %, then transfer € until one of the P’s has the

same point of application as 2, and combine them by the
parallelogram of forces. We thus have the whole system
equivalent to two forces, viz., the second £, and the resultant
of R and the first 2. These two forces are not in the shme
plane, and therefore cannot be replaced by a single resultant.

89. Problem. (Non-concurrent forces in space.)—Given all
geometrical elements (including a, B, y, angles of P), also the
weight of @,and weight of apparatus & ; 4 being a hinge whose
pin is in the axis ¥, O a ball-and-socket joint: required the
amount of P (Ibs.) to preserve equilibrium, also the pressures
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{amount anu direction) at A and O ; no friction. Replace P
.by its X, ¥, and Z components. The pressure at 4 will have

Z and X components ; that at O, X, Y, and Z components.
The body is now free, and there are six unknowns.
2X, 2 Y, and ZZ give, respectively,
Pesa+ X + X, =0; :
Pcosp+4+ Y, =0;andZ, +2,—Q—G—Pcosy =0.
As for moment-equations (see note in last paragraph), project-
ing the system upon YZ and putting Z(Pa) about O = 0,
we have
—Z1+ Qd + Ge+ (P cos y)b + (Peos f)c = 0;
projecting it upon XZ, and putting Z(Pa) ahout O = 0, we
have Qr — (P cos a)e — (Pcos y)a = 0;
projecting on X ¥, moments about O give
X1+ (P cos @)b — (P cos f)a = 0.
From these six equations we may obtain the six unknowns,
P X, 7, Z,X,and Z,. If for any one of these a negative

result is obtained, it shows that its direction in Fig. 44 should
be reversed.
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CHAPTER 1IV.
STATIC8 OF FLEXIBLE CORDS.

4v. Fostulate and Principles.—The cords are perfectly flexi-
ble and inextensible. All problems will be restricted to one
plane. Solutions of problems are based on three principles,
viz.:

Prin: I.—The strain on a cord at any point can act only
along the cord, or along the tangent if it be curved.

Prin. II.—We may apply to flexible cords in equilibrium all
the conditions for the equilibrium of rigid bodies ; since, if the
system of cords became rigid, it would still, with greater rea-
son, be in equilibrium.

Prin. ITL.—The conditions of equilibrium cannot be applied,
of course, unless the system can be cousidered a free body,
which is allowable only when we conceive to be put in, at the
points of support or fastening, the reactions (upon the cord)
of those points and the supports removed. These reactions
having been put in, then consider the case in Fig. 45 in one
plane. If we take any point, p, on the cord as a centre
of moments, knowing that the resultant R, of the forces P,
P,, and P,, situated on one side of p, must act along the cord
R B ‘F; R through p (by Prin. 1), therefore

we have Pa, — P,a, — P,a,

. = 2 X zero = 0, ‘and (equally
R well) Pa,— Pa,— Pa, =0.
That is, in a system of cords in
Fio. 4. equilibrium in a plane, if a centre

of moments be taken on the cord, the algebraic sum of the mo-
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ments of those forces situated on one side (either) of this point
will equal zero.

41. The Pulley.—A cord in equilibrinm over a pulley whose
axle is smooth has the same tension on both sides; for, Fig. 46,

Fie. 46, . Fia. 47.

considering the pulley and its portion of cord free =(Pa) = 0
about the centre of axle gives P'r = Pr, i.e,, P’ = P = ten-
sion in the cord. Hence the pressure & at the axle bisects
the angle a, and therefore if a weighted pulley rides upon a
cord ABC, Fig. 47, its position of equilibrium, B, may be
found by éntting the vertical through 4 by an arc of radius
CD = length of cord,and centre at C, and drawing a horizon-
tal throngh the middle of AD to cut CD in B. A smooth
ring would serve as well as the pulley ; this would be a slip-
knot. :

42. If three cords meet at a fiwed knot, and are in ethb¢
rium, the tension in any one is the equal and
opposite of the resultant of those in the other
two.

.43. Tackle—If a cord is continuous over a.
number of sheaves in blocks forming a tackle,
neglecting the weight of the cord and blocks and
friction of any sort, we may easily find the ratio
between the cord-tension 2 and the weight to be
sustained. E.g., Fig. 48, regarding all the straight

free, we have, Fig. 49'(from 2Y=0),4P — G Fo. 4 Fo.
G .
=0, P= I The stress on the support C will = 5P,



44 MECHANICS OF ENGINEERING.

44. Weights Suspended by Fixed Knots.—Given all the geo-

N, metrical elements in Fig. 50, and
H, [0 X one weight, G,; required the re-
< * v} wmaining weights and the forces

a\[} ! L n ’," H, v, H, and‘V,‘, .a.t tl.ne points
s] A Hs  of support, that ‘equilibrium may

Y ey N== obtain. Hjand V,are the lori-
G} Gs zontal and vertical components of

Fie. 50. the tension in the cord at O;

similarly A, and V, those at n. There are n 4 2 unknowns.
From Prin. II we have ZX =0, and 2 Y = 0; ie., H,— H,
=0,and [+ G, +...]—[Vo+ Vo] =0. While from
Prin. 111, taking the successive knots, 1, 2, etc., as centres of
moments, we have

- V@l + Ho?/ = 0’

- Vo“’s + Ho!/: + Gl(w’ - mx) = 0’

- Vo-’”- + -[103/’ + G,(w, - a’x) + Gn(wa —,)= 0’
ete., for n knots.

Thus we have n + 2 independent equations, a sufficient
number, and they are all of the first degree (with reference to
the unknowns), and easily solved. As a special solution, we
may, by § 42, resolve @, in the directions of the first and sec-
ond cord-segments, and obtain their tensions by a parallelogram
of forces; then at the second knot, knowing the tension in the
second segment, we may find that in the third and @, in like
manner, and so on. Of course &, and ¥, are components of
the tension in the first segment, 7, and V, of that in the
last.

45. The converse of the problem in § 44, viz., given the
weights @, etc., , and y,, the lengths g, 3, ¢, etc.; required
H, Vy, H,, V,, and the co-ordinates z, y,, ,, ¥,. etc., of the
fixed knots when equilibrium exists, contains 2n 4 2 un-
knowns. Statics furnishes n 4 2 equations (already given in
§ 44); while geometry gives the other n equations, one for
each cord-segment, viz,, 2’ +y,'=a'; (2, — a,)' 4 (y, — 7.)
= ; ete. .
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However, most of these 2n 4 2 equations are of the second
degree ; hence in the general case they cannot be solved.

46. Loaded Cord as Parabola.—If the weights are equal and
infinitely small, and are intended to be uniformly spaced
along the horizontal, when equilib-
rium obtains, the cord having no
weight, it will form a parabola. Let

= weight of loads per horizontal
linear unit, O be the vertex of the
curve in which the cord hangs, and
m any point. We may consider
the portion Om as a free body, if Fra. 81.
the reactions of the contiguous portions of the cord are put in,
Hj, and 7, and these (from Prin. I.) must act along the tangents
to the curve at O and m, respectively; i.e., H, is horizontal,

and 7 makes some angle @ (whose tangent = gw’ ete.) with
the axis X. Applying Prin. II,,

ZX:OgivesTcos¢-—Ho=0;i.e.,]"%:ﬂo; o@D
2Y=OgivesTsin¢-—gw=0;i.e.,]’g‘y=g:v. )]

Dividing (2) by (1), member by member, we have %— = 79‘12 ;
0

dy = Fwda: the differential equation of the curve;

2 2Ho .
v =—§fwdw= A R @ = q-y, the equation of a
parabola whose vertex is at O and axis vertical.

Nore.—The same result, -~ d.’n }'; may be obtained by considering that

we have here (Prin. IL.) a fres rigid body acted on
by three forces, 7', Hy, and R = gz, acting verti-
cally through the middle of the abscissa z; the
resultant of Hp and R must be equal and oppo-
™ gite to T, Fig. 52. mnzp—£ ordy z

' Hy ™ dz~ Ho
Evidently also the tangent-line bisects the al»-
scissa z.
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47. Problem under § 46. [Case of a suspension-bridge in
which the suspension-rods are vertical, the weight of roadway
is uniform per horizontal foot, and large compared with that
of the cable and rods. Here the roadway is the only load : it
is generally furnished with a stiffening truss to avoid deforma-
tion under passmg loads.]—Given the span = 23, Fig. 53,

Y v / ‘the deflection = a, and the rate of loading

b = ¢ lbs. per horizontal foot ; required the
o * a ' tension in the cable at O, also at m ; and
Tesviveiie Xthe length of cable needed. From the
Fio. 58, equation of the parabola ¢’ = 2Hy, put-

ting @ = b and y = a, we have H, = ¢b* + 2a = the tension
at 0. From ZY =0 we have V, = ¢b, wlule 22X =0 gives

H = H,'; ~.the tensionatm =V H'+4 V'= —[gb VY4a'+ ']

The semi-length, Om , of cable (from p. 88, Todhunter’s In-
tegral Caleulus) is (letting n denote H, < 29, = 8" =+ 4a)
Om= VYna+a +n.log. [(Va+ ¥n+a) =+

48. The Catenary.*—A flexible, inextensible cord or chain, of
uniform weight per unit of length, hung at two points, and
supporting 4t8 own weight alone, forms a curve called the
catenary. Let the tension /, at the lowest point or vertex be
represented (for algebraic convenience) by the weight of an
imaginary length, ¢, of similar cord weighing ¢ lbs. per unit
of length, i.e., H,=ge; an actual portion of the cord, of
]ength 8, welghs g8 lbs. Flg 54 shows as free and in equilib-

T, . rium a portion of the curve of any

Y f \ length &, reckoning from O the

2 vertex. Required the equation of

the curve. The load is uniformly

spaced along the curve, and not
horizontally, as in §§ 46 and 47.

ida;

H, qs
Fro. 54, 2 Y =0gives ?%_:_qa; while

22X =0 gives 7 =9 Hence, by division, cdy = sde, and
squaring,dy* =¢d2’. . .-. . . . . . .. 00

* For the “ transformed catenary,” see p. 895,
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Put dy' =ds' — do’, and we have, after solving for da

cds . ds d s | N
dw:V-e———q—o;. .'.w=c["7‘9,='_*:?=0[010§(3+’3 + ).

and @ =c.log [(s+ Y&+c)+c], . . . (9

a relation between the horizontal abscissa and length of curve.
Again, in eq. (1) put do’ = ds* — dy’, and solve for dy.

. _ &ds 1 d+ &)
This gives dy = m_g. CETI0

y= ‘1‘,/: @+ ) e+ = i[;2(c’ + 8", and finally
y=VFFé—c . . . ... @

Clearing of radicals and solving for ¢, we have

c=@E"—-y)+2. . ... . 4

Example.—A 40-foot chain weighs 240 1bs., and is so hung
from two points at the same level that the deflection is 10
feet. Here, for 8 =20 ft., ¥ =10; hence eq. (4) gives the
parameter, ¢= (400 — 100) =+ 20 = 15 feet. ¢ = 240 =40
=6 lbs. per foot. ... the tension at the middle is M, = gc
= 6 X 15 =90 lbs.; while the greatest tension is at either
support and = 490" 4 120* = 150 Ibs.

Knowing ¢ =15 feet, and putting 8 =20 feet = half
length of chain, we may compute the corresponding value of
@ from eq. (2); this will be the half-span [log, m = 2.30258
X (common log m)]. To derive s in terms of , transform
eq. (2) in the sense in which n = log, m may be transformed
into & = m, clear of radicals, and solve for &, which gives

e=ic|:ez—e-3:l. N ()

Again, eliminate s from (2) by substitution from (8), trans-
form as above, clear of radicals, and solve for ¥ -+ ¢, whence

Therefore

y+e=14c e‘-’+e-g:|, R ()}
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which is the equation of a catenary with axes as in Fig. 54.
If the horizontal axis be taken a distance = ¢ below the ver-
tex, the new ordinate ¥’ = y - ¢, while # remains the same;
the last equation is simplified.

If the span and length of chain are given, or if the span
and deflection are given, ¢ can be determined from (5) or (6)
only by successive assumptions and approximations.

48a. tAddondm to § 66. Mass.—In PHYsICS, the fundamental units are
those o

SPACE, involving a unit of length (and thence of area and volume);

TIME, ¢ & unit of time, usually the second ;

Mass, “ a unit of mass, which (by Government decree) may be the
quantity of matter in a specified piece of platinum, or specified volume of water,
etc. (a beam-balance being used to determine equal quantities of mass); while

ORCE involves a derived unit, being measured by its effect in accelerating
the velocity of a moving mass, since it is proportional both to the mass and the
acceleration. The unit force (called absolute unit) is the force necessary to pro-
duce unit acceleration in a unit of mass; so that to produce an acceleration = p in
a mass = m requires a force = F'=mp, and the force thus obtained is in absolute
units. This is called the dynamic measure of a force.

Ezxample.—In the C.G.8. system of units, required the constant force necessary
to cause a mass of 400 grams to gain 200 velocity units in 2 sec; i.e., p =100
centims. per sec., per sec. From /= mp we have

F = 400 x 100 = 40000 abs. units of force (or dynes, in C.G.8. system).

In the ft.-1b.-sec. system the absolute unit is called a poundal,

In MECHANICS OF ENGINEERING, however, it is more convenient to regard the

fundamental units to be those of
SPACE, as ft., metre, etc., area and volume corresponding ;
TiMe, as seconds, hours, etc.;

mF(;roe, as lbs., grams, kilograms, tons, etc., indicated by a spring balance;
while for
fol Mass we assume & derived unit, 8 mode of measuring it being developed as

ollows:

If by experiment (block on smooth table, for instance) we find that a constant
force P (lbs., tons, kilos.) will maintain an acceleration =p in the rectilinear
motion (in line of force) of a body whose weight (by previous trial with a spring
balance) is @ (1bs., tons, or other unit); and if in & second experiment, by allow-
ing the force @ to act on the same body in vacuo, a free vertical fall wiﬁl accelera-
tion =g is the result,—we find that the proportion (Newton’s 2d Law) P:G::p:g

is verified. This may be written P= — . p, and may then be read: Force = mass

X acceleration, if we call the quotient @+ g the Mass of the body whose weight
(by spring balance) is = & at a locality where the acceleration of gravity =g; for
this quotient will be the same at all localities on the earth’s surface.

Kzample (same as above).—If a body whose weight & = 400 grams (force) is to
have its velocity increased, in 2 sec., from 300 centims. })er sec. to 500 centims.
per sec., at a uniform rate, we must provide a constant force

400 40000
P=§ﬁx100=ﬁ=40.77 grams; or .040 kilos.
This is called the gravitation measure of a force. Hence it is evident that to re-
duce absolute units (called dynes and poundals) in the C.G.S. and ft.-lb.-sec.
systems, respectively) to ordinary practical units of force (Ibs., tons, kilos., etc.,
of a spri nce), we divide by the value of g proper to the system of unils em~
ployed; and vice versd.




PART II.-.DYNAMICS.

CHAPTER I
RECTILINEAR MOTION OF A MATERIAL POINT.

49. Uniform Motion implies that the moving -point passes
over equal distances in equal times; variable motion, that un-
equal distances are passed over in equal times. In uniform
motion the distance passed over in a unit of time, as one sec-
ond, is called the velocity (= v), which may also be obtained
by dividing the length of any portion (= s) of the path by
the time (= ¢) taken to describe that portion, however small or
great; in variable motion, however, the velocity varies from
point to point, its value at any point being expressed as the
quotieut of ds (an infinitely small distance containing the
given pomt) by d¢ (the infinitely small portion of time in
which ds is described).

49a. By acceleration is meant the rate at which the velocity
of a variable motion is changing at any point, and may be a
ungform acceleration, in which case it equals the total change
of velocity between any two points, however far apart,-divided
by the time of passage; or a variable acceleration, having a
different value at every point, this value then being obtained
by dividing the velocity-increment, dv, or gain of velocity
in passing from the given point to one infinitely near to it, by
dt, the time occupied in acquiring the gain.*  (Acceleration
must be understood in an algebraic sense, a negative accelera-
tion implying a decreasing velocity, or else that the velocity in
a negative direction is increasing.) The foregoing applies to
motion in a path or line of any form whatever, the distances
mentioned being portions of the path, and therefore measured

along the path.

* See addendum on p. 12.
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60. Rectilinear Motion, or motion in a straight line.—The
general relations of the quantities involved may be thus stated
(see Fig. 55): Let v = velocity of the body at any instant ;
Sy Ors—2ds ds_ +S then dv = gain of velocity
I \ T in an instant of time d¢. Let

dtlatl t = time elapsed since the
body left a given fixed point,
which will be taken as an origin, O. Let ¢ = distance (4-or
—) of the body, at any instant, fromn the origin O; then ds =
distance traversed in a time d¢. Let p = acceleration = rate
at which v 8 increasing at any instant. All these may be
variable ; and ¢ is taken as the independent variable, i.e., time
is conceived to elapse by equal small increments, each = d¢;
hence two consecutive ds’s will not in general be equal, their
difference being called d's. Evidently ¢ is = zero, i.e., d¢ is
constant.

Fio. 5S.

Since _c%t- = number of instants in one second, the velocity at

any instant (i.e., the distance which would be described at that

. . 1 . ds
ratemonesecond)mv:ds.zt-,..v_zz. N ()

. ds d's
Similarly, p = dv. d , and (smce dv=d\g:)="7)
dv _d's
== aF N (1
Eliminating d¢, we have also vdv = pds. . . . . .(IIL.)
These are the fundamental differential formulse of rectilinear
motion (for curvilinear motion we have these and some in ad-
dition) as far as kinematics, i.e., as far as space and time, is
concerned. The consideration of the mass of the material
point and the forces acting upon it will give still another rela-
tion (see § 55).

51. Rectilinear Motion due to Gravity.—If a material point
fall freely in vacuo, no initial direction other than vertical
having been given to its motion, many experiments have
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shown that this is a uniformly accelerated rectilinear motion
in a vertical line having an acceleration (called the accelera-
tion of gravity) equal to 32.2 feet per square second, or 9.81
metres per square second ; i.e., the velocity increases at this
constant rate in a downward direction, or decreases in an up-
ward direction.

[Nore.—By ‘‘ square second ” it is meant to lay stress on the fact that an
acceleration (being = d% + d?) is in quality equal to one dimension of
length divided by two dimensions of time. E.g., if instead of using the
foot and second as units of space and time we use the foot and the minute,
g will = 82.9 X 8600; whereas a velocity of say six feet per second would
= 6 X 60 feet per minute. The value of g = 82.2 implies the units foot
and second, and is sufficiently exact for practical purposes.]

52. Free Fall in Vaouo.—Fig. 56. Let the body start at O
with an initial downward velocity = ¢. The accelera- -s
tion is constant and = -+ ¢g. Reckoning both time and |
distance (-} downwards) from O, required the values of ‘ol

c
8

the variables ¢ and v after any time ¢ From eq. (IL.), 7
§50, wehave + ¢ = dv + dt; .". dv = g¢dt,in which the ~
two variables are separated. l%
Hence fdv_gfdt, i.e., [a/v_g[}t ory—c="
gt — 0; and finally,v =c¢+g¢. . . .o @ Fw“

(Notice the correspondence of the hmlts in the foregoing
operation; when ¢ = 0, v = +-¢.)

From eq. (L), § 50, v = ds = dt; .. substituting from (1),
(c -+ g?)d¢, in which the two variables s and ¢ are sepa-

fds_ fdt+gftdt ie. [s_cl;t{-g[tt’

or s=ct+490. . . @) -
Again, eq. (ITL.), § 50, vdv = gds, in which the vauables v
and s are already separated.

fvdv —gfds or[;}v _g[oe ie,3(0'—c) = gs,

v —c
% N )

or 8=
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If the initial velocity = zero, i.e., if the body falls from rest,
. U2
eq. (3) gives 8= @andv = ¢/2gh* [From the frequent re-

currence of these forms, especially in hydrauiics, ;—g is called the

“height due to the velocity v,” i.e., the vertical height through
which the body must fall from rest to acquire the velocity v;
while, conversely, /94 is called the velocitydue to the height

or head A.]
By eliminating g between (1) and (3), we may derive another
formula between three variables, s, v, and ¢, viz.,

s=Hct+o). .. ... . @

53. Upward Throw.—If the initial velocity were in an up-
ward direction in Fig. 56 we might call it — ¢, and introduce it
with a negative sign in equations (1) to (4), just derived; but
for variety let us call the upward direction 4, in which case
an upward initial velocity would = + ¢, while the acceleration
= — g, constant, as before. (The motion is supposed confined
within such a small range that g does not sensibly vary.) Fig.

+S 57 From p = dv + dt we have dv = — gd¢ and
4 L_‘,.A"(’al'v=—g"_/o”dt;.'.’v—c=—gt;or*v:c—gt.(l)a
¥ "From v = ds + dt, ds = cdt — gtdt,

¢ ¢
o ie, [ ds=cf dt —g [ tdt; ors=ct —igr. (2
s v&v:pdegives/ow'vdxv=—gfds,whence

Fia. 57.
¢ —

3(' — ') = — gs, or finally, s =
And by eliminating ¢ from (1)a and (3)a,
s=H%ce+to). . . . . .. 4)a

The following is now easily verified from these equations :
the body passes the origin again (s = 0) with a velocity = — ¢,
after a lapse of time = 2¢c < g. The body comes to rest (for

. (3a

* In Hydraulics % is used instead of s.
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an instant) (put » = 0) after a time = ¢ + g¢,and at a distance
8 = ¢* + 2¢ (“height due to velocity ¢”’) from O. For¢ >
¢ + ¢, v is negative, showing a downward motion; for ¢ >
2¢ + g, 8 i8 negative, i.e., the body is below the starting-point
while the rate of change of v is constant and = —g at all
points.

54. Newton's Laws.—As showing the relations existing in
general between the motion of a material point and the actions
(forces) of other bodies upon it, experience furnishes the fol-
lowing three laws or statements as a basis for dynamies :

(1) A material point under no forces, or under balanced
forces, remains in a state of rest or of uniformn motion in a
right line. (This property is often called Jnertia.)

(2) If the forces acting on a material point are unbalanced,
an acceleration of motion is produced, proportional to the re-
sultant force and in its direction.

(3) Every action (force) of one body on another is always
accompanied by an equal, opposite, and simultaneous reaction.
(This was interpreted in § 3.)

As all bodies are made up of material points, the resnlts ob-
tained in Dynamics of a Material Point serve as a basis for the
Dynamics of a Rigid Body, of Liquids, and of Gases.

65. Mass.*—If a body is to continue moving in a right line,
the resultant force P at all instants must be directed along that
line (otherwise it would have a component deflecting the body
from its straight course).

In accordance with Newton’s second law, denoting by p the
acceleration produced by the resultant force (& being the
body’s weight), we must have the proportion P : G :: p:g;
ie.,

== Pt , or P=Mp. . . (IV)

Eq. IV. and (L), (IL.), (IIL) of § 50 are the fundamental
equations of Dynamics. Since the quotient & <+ g is invaria-

* Bee Addendum on p. 48,

. —

|
/
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ble, wherever the body be moved on the eartl’s surface (G and
g changing in the same ratio), it will be nsed as the measure
-of the mass M or quantity of matter in the body. In this way
it will frequently happen that the quantities & and g will ap-
_.pear in problems where the weight of the body, i.e., the force
. of the earth’s attraction upon it, and the acceleration of gravity
have no direct connection with the circumstances. No name
' will be given to the unit of mass, it being always understood
that the fraction & + ¢ will be put for M before any numeri-
cal substitution is made. From (IV.) we have, in words,
{ accelerating force = mass X accelerationy
also, acceleration = accelerating force <+ mass.

56. Uniformly Accelerated Motion.—If the resultant force is
constant as time elapses, the acceleration must be constant (from
eq. (IV.), since of course M is constant) and = P + M. The
motion therefore will be uniformly accelerated, and we have
only to substitute 4 p (constant) for g in eqgs. (1) to (4) of
§ 52 for the equations of this motion, the initial velocity being
= ¢ (in the line of the force).

v=c+pt . . . (1); s=ct+3pt% . . . (9
(@ — )

% 3 « « (8), ands=4%(c+o) . . . (49

If the force is in a negative direction, the acceleration will
be negative, and may be called a refardation; the initial veloe-
ity should be made negative if its direction requires it.

8 =

57. Examples of Unif. Aco. Motion.—ZFxample 1. Fig. 58.
A small block whose weight is § Ib. has already described a
—s o P Mg distance 4o = 48 inches over a
IA_“_W_—&"_%—-—-] smooth portion of a horizontal

——_— table in two seconds; at O it en-
counters a rough portion, and a consequent constant friction of
2 oz. Required the distance described beyond O, and the time
occupied in coming to rest. Since we shall use 32.2 for g,
times must be in seconds, and distances in feet ; as to the unit
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uf force, as that is still arbitrary, say ounces. Since 40 was
smooth, it must have been described with a uniform motion
(the resistance of the air being neglected); hence with a veloc-
ity = 4 ft. =+ 2 sec. = 2 ft. per sec. The initial velocity for
the retarded motion, then,is¢ = 4 2 at 0. At any point be-
yond O the acceleration = force <+ mass = (— 2 oz.) + (8 oz.
=+ 32.2) = — 8.05 ft. per square second, i.e., p = — 8.05 =
constant ; hence the motion is uniformly accelerated (retarded
here), and we may use the formulee of § 56 with ¢ = 4 2, p =
— 8.05. At the end of the motion » must be zero, and the
corresponding values of ¢ and ¢ may be found by puttingv = 0
in equations (3) and (1), and solving for & and ¢ respectively :
thus from (3),& =} (—4) =+ (— 8.05), i.e., 8 = 0.248 +, which
must be feet ; while from (1), ¢ = (— 2) + (— 8.05) = 0.248 -+,
which must be seconds.

Example 2. (Algebraic.)—Fig. 59. The two masses M, =
@G, = gand M = @ =+ g are connected by a flexible, inexten-
sible cord. Table smooth. Required the acceleration common
to the two rectilinear motions, and the tension in the string &S,

G

P ] .

I Gy
G N

Fia. 59. Fio. 00.

there being no friction under @,, none at the pulley, and »no
mass in the latter or in the cord. At any instant of the mo-
tion consider @, free (Fig. 60), V being the pressure of the
table against G,. Since the motion is in a horizontal right line
3(vert. compons.)= 0, i.e., ¥ — @, = 0, which determines V.
8§, the only horizontal force (and resultant of all the forces) =
M. p,ie,
S§=&p+g9. . . . . .. 1@
At the same instant of the motion consider @ free (Fig. 61);
the tension in the cord is the same value as above = 8. The
accelerating force is ¢ — §, and
so=mass X acc.,, or G — 8= (G +gp. . (2
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¢ From equations (1) and (2) we obtain p = (fyg) +

lv (@ + G,) = a constant ; hence each motion is uniformly

accelerated, and we may employ equations (1) to (4) of

b G§ 56 to find the velocity and distance from the starting-

o points, at the end of any assigned time #, or vice versd.

""" The initial velocity must be known, and may be zero.
Also, from (1) and (2) of this article,

S = (GG, + (G + @) = constant.

Example 3.—A body of 2§ (short) tons weight is acted on
during § minute by a constant force . It had previously de-
scribed 3164 yards in 180 seconds under no force; and subse-
quently, under no force, describes 9900 inches in £y of an hour.
Required the value of 2. Ans. P = 22.1 lbs.

Erxample 4.—A mass of 1 ton weight, having an initial
velocity of 48 inches per second, is acted on for  minute by a
force of 400 avoirdupois ounces. Required the final velocity.

Ans. 10.037 ft. per sec.

Ezample 5.—Initial velocity, 60 feet per second ; mass weighs
0.30 of a ton. A resistance of 1124 lbs. retards it for & of
a minute. Required the distance passed over during this time.

Ans. 286.8 feet.

Ezample 6.—Required the time in which a force of 600 avoir-
dupois ounces will increase the velocity of a mass weighing 1}
tons from 480 feet per minute to 240 inches per second.

Ans. 30 seconds.

Ezample T—What distance is passed over by a mass of (0.6)
tons weight during the overcoming of a constant resistance
(friction), if its velocity, initially 144 inches per sec., is reduced
to zero in 8 seconds. Required, also, the friction.

Ans. 48 ft. and 55 lbs.

Ezample 8.—Before the action of a force (value required) a
body of 11 tons had described uniformly 950 ft. in 12 minutes.
Afterwards it describes 1650 feet uniformly in 180 seconds.
The force acts 30 seconds. P =1  Ans. P =178 lbs.
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58. Graphic Representations. Unif. Acc. Motion.—With the
initial velocity = 0, the equations of § 56 become
L)) =Pt, . . « e . (1) 8 = ﬂt’, e e o o o (2)
s=2"+2,. . . (8 and s=%t . . . . . (9
Egs. (1), (2), and (3) contain each two variables, which may

graphically be laid off to scale as co-ordinates and thus give a
curve corresponding to the equation. Thus, Fig. 62, in (1.), we

Sots e bt
WA,

(IL) (IIL)
Fro. 62

have a right line representing eq. (I.); in (IL.), a parabola with
axis parallel to &, and vertex at the origin for eq. (2); also a
parabola similarly sitnated for eq. (3). Eq. (4) contains three
variables, 8, v, and £. This relation can be shown in (I.), & be-
ing represented by the area of the shaded triangle = ot
(IL.) and (II1.) have this advantage, that the axis OS may be
made the actnal path of the body. [Let the student determine
how the origin shall be moved in each case to meet the supposi-
tion of an initial velocity = -+ ¢ or — ¢.]

69. Variably Accelerated Motions.—We here restate the equa-
tions
ds dv _d's
v=gi- - Wsp="Zz=7-- (TL); vdv = pds . . (IIL);
and resultant force
=P=Mp,. . .. . . (IV.);

which are the only ones for general uge in rectilinear motion.
ProBLEM 1.—In pulling a mass M along a smooth, horizon-
tal table, by a horizontal cord, the tension is so varied that
8 = 41" (not a homogeneous equation ; the units are, say, the
foot and second). Required by what law the tension varies.
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From (1) v = ‘z = % = 12¢; from (IL), p = d((l;t’) =
24¢; and (IV.) the tension = P = Mp = 24 M, i.e., varies
directly as the time.

ProBLEx 2. “Harmonic Motion,” Fig. 63.—A small block

—lp
Q...--g--.- ~+S

il

{ i 11
Fra. 63

on a smooth horizontal table is attached to two horizontal
elastic cords (and they to pegs) in such a way that when the
block is at O, each cord is straight but not tense ; in any other
position, as m, one cord is tense, the other slack. The cords
are alike in every respect, and, as with springs, the tension
varies directly with the elongation (= ¢ in figure). If for an
elongation &, the tension is 7}, then for any elongation s it is
T = T8 + 8. The acceleration at any point m, then, is
p=—(T+ M)= — (T8 +~ Ms), which for brevity. put
P = — as, a being a constant. Required the equations of
motion, the initial velocity being = + ¢, at 0. From eq. (II1.)

vdv = — asds; .'.'/cwfvdv= —a‘/o"sde,
ie,3(v' — )= —das'; or,v'=c"—as". . (1)
From (1.), d¢ = ds + v; hence from (1),
Sat= [1as+ve—an,

or

_1 dfs Va = c] 1, 34/;)
TVah Vi—vaze vz;[n“'““(T

1 . .
=7;Slll' ey R )
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Inverting (2), we have & = (¢ + ¥a) sin (¢¥a),. . . (3)
Again, by differentiating (8), see (L), v = ¢ cos (¢ ¥a) (4)
Differentiating (4), see (IL), p = — c¥asin (¢¥a).. . (5)

These are the relations required, but the peculiar property
of the motion is made apparent by inquiring the time of pase-
ing from O to a state of rest; i.e., put v = 0 in equation (4),
we obtain ¢ = 47 + ¥, or §x + ¥4, or §x + ¥a, and so on,
while the corresponding values of s (from equation (3)), are
+ (¢ + ¥a), — (¢ + ¥a), + (¢ =+ ¥a),and s0 on. This shows
that the body vibrates equally on both sides of O in a cycle or
period whose duration = 27 + #a, and is independent of the
initial velocity given 4t at O. Each time it passes O the
velocity is either 4 ¢, or — ¢, the acceleration = 0, and the
time since the start is = n# < ¢/g, in which » is any whole
number. At the extreme point p = F ¢ ¥a, from eq. (5).
If then a different amplitude be given to the oscillation by
changing ¢, the duration of the period is still the same, i.e.,
the vibration is ¢sochronal. The motion of an ordinary pen-
dulum is nearly, that of a cycloidal pendulum exactly, harmoniec.

If the crank-pin of a reciprocating engine moved uniformly
in its circular path, the piston would have a harmonic motion
if the connecting-rod were infinitely long, or if the design in

Fio. 64.

Fig. 64 were used. (Let the student prove this from eq. (3).)"
Let 2r = length of stroke, and ¢ = the uniform velocity of the
crank-pin, and M/ = mass of the piston and rod AB. Then
the velocity of M at mid-stroke must = ¢, at the dead-points,
zero; its acceleration at mid-stroke zero; at the dead-points
the ace. = ¢ ¥a, and 8 = » = ¢ + ¥a (from eq. (3)); .. Va
=c¢ -+ 7, and the dcc. at a dead point (the maximum ace.)
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= ¢ < r. Hence on account of the acceleration (or retarda-
tion) of M in the neighborhood of a dead-point a pressure will
be exerted on the crank-pin, equal to mass X ace. = Mc' + r
at those points, independently of the force transmitted due to
steam-pressure on the piston-head, and makes the resultant
pressure on the pin at € smaller, and at D larger than it would
be if the “inertia” of the piston and rod were not thus taken
into account. 'We may prove this also by the free-body method,
considering A B free immediately after passing the dead-point

P, G , O, neglecting all friction. See Fig.

F»[II : B-P 65. The forces acting are: @, the

Nt Y I weight; &, the pressures of the

Fro. 6. guides ; P, theknown effective steam-

pressure on piston-head; and 2”, the unknown pressure of

crank-pin on side of slot. There is no change of motion ver-

tically ;.. N7 4 V — @ = 0, and the resultant force is 2 — P’

= mass X accel. = Mc' =+ », hence P’ = P — Mc* =+ .

Similarly.at the other dead-point we would obtain P’ = P 4

Mc* = r. In highspeed engines with heavy pistons, ete.,

Mc' = r is no small item. [The upper half-revol., alone, is
here considered.]

ProBLEM 3.—Supposing the earth at rest and the resistance
of the air to be null, a body is given an initial npward vertical
velocity = ¢. Required the velocity at any distance & from

4s{  the centre of the earth, whose attraction varies in-

versely as the square of the distance s.
b

See Fig. 66.—The attraction on the body at the
surface of the earth where ¢ = », the radius, is its
fe  weight @; atany point m it willbe P = G(r* + &),

while its mass = G +g.
Hence the acceleration at m = p = (— P)+ M
= — ¢g(r" + §). Take equation III., vdv = pds,

Fie. 6. and we have
vdv = — gr'e ~3ds; ..

[vdv: —gr"/r“a"de; or, I::'}v’=‘ —gr'[:— %,

e 40— =—g' (1 —3). . . .

Sann - atennet
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Evidently v decreases, as it should. Now inquire how small
« value ¢ may have that the body shall never return; i.e.,
that v shall not =0 untils =w. Putv=0and 8§ = « in
(1) and solve for ¢; and we have

c= ¥2r = V2 X 32.2 X 21000000,

= about 36800 ft. per sec. or nearly 7 miles per sec. Con-
versely, if a body be allowed to fall, from rest, toward the
earth, tho veloeity with which it would ‘strike the surface
would be less than seven miles per second through whatever
distance it may have fallen.

If a body were allowed to fall through a straight opening ir
the earth passing through the centre, the motion would be har-
monic, since the attraction and consequent acceleration now
vary directly with the distance from the centre. See Prob. 2.
This supposes the earth homogeneous. ' .

ProsLEM 4.—Steam working expansively and raising a weight.
Fig. 67.—A piston works without
friction in a vertical cylinder. Let
§ = total steam-pressure on the
under side of the piston ; the weight
@G, of the mass @ -+ ¢ (which in-
cludes the piston itself) and an
atmospheric pressare = A, con-
stitute a constant back-pressure. -
Through .the portion OB = s,, of Fia. 67,
the stroke, S is constant = §,, while beyond B, boiler com-
munication being “ cut off,” § diminishes with Boyle’s law, i.e.,
in this case, for any point above B, we have, neglecting the
“clearance”, " being the. cross-section of the eylinder,

8:8,::Fs : Fa; or S=28;s, +s.

Full length of stroke = OV = s,. Given, then, the forces
8 and A, the distances s, and s,, and the velocities at O and
at N both = O (i.e., the mass M = G + ¢ is to start from rest at
0. and to come to rest at N'), required the proper weight @ to
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fulfil these conditions, S varying as already stated. The accel-
eration at any point will be
p=[S'-.A—G]+.M: 3 [ . . (1)

Hence (eq. IIL) Mvdv =[S — A — Gds, and .. for the
whole stroke

M[%@:[N[S—A — G)ds; ie,
0=8 [ ds + 8oL — 4 [t 6 [,

or 8, |:1 + log, ?] =As,+ Gs. . . . (9

Since § = S, = constant, from O to B, and variable, =
S8, = 8 from B to N, we have had to write the summation

N
-‘/o‘ Sds in two parts. .

From (2), G becomes known, and ... M also (= & = ¢).

Required, further, the time occupied in this upward stroke.
From O to B (the point of cut-off) the motion is uniformly
accelerated, since p is constant (S being = §, in eq. (1)),
with the initial velocity zero; hence, from eq. (3), § 56,
the velocity at B =wv, = ¥2[S, — 4 — GJs, + M is known
.. the time ¢, = 2s, = v, becomes known (eq. (4), § 56) of de-
scribing OB. At any point beyond B the velocity v may be ob-
tained thus: From (IIL) vdv = pds, and eq. (1) we have,
summing between B and any point above,

uf vdv:S,s,‘/.‘“%—(A+G)‘[:‘da; ie.,

GWw—v)

; = Sa,log.; — (4 +6) (6 —s).

This gives the relation between the two variables ¥ and &
anywhere between B and &V; if we solve for v and insert its
value in dt = ds -+ v, we shall have df = a function of ¢ and
ds, which is not integrable. Hence we may resort to approxi-
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mate methods for the time from B to V. Divide the space
BX into an uneven number of equal parts, say five; the dis-
tances of the points of division from O will be s, 8,3, 8,, 8,
and s,. For these values of s compute (from above equation)
v, (already known), »,, v,, v,, v,, and v, (known to be zero). To
the first four spaces apply Simpson’s Rule, and we have the
time from B to the end of s,,

. ds s,—a1 4 2 4 1
[,‘=[ 3 BPPFOX. = —35 R;+:,,+;,+;.+;Js

while regarding the motion from 5 to ¥ as uniformly retarded
(approximately) with initial velocity = v, and the final = zero,
we have (eq. (4), § 56),

Evt = 2(8, — 8,) =+ v,

By adding the three times now found we have the whole time
of ascent. In Fig. 67 the dotted curve on the left shows by
horizontal ordinates the variation in the velocity as the distance
8 increases ; similarly on the right are ordinates showing the
variation of 8. The point E, where the velocity is a maximum
= v,,, may be found by putting p=0,ie., for §=4+ G,
the acelerating force being = 0, see eq. (1). Below Z the ac-
celerating force, and consequently the acceleration, is positive ;
above, negative (i.e., the back-pressure exceeds the steam-
pressare). The horizontal ordinates between the line /£ KL
and the right line 27 are proportional to the accelerating force.
If by condensation of the steam a vacuum is produced be-
low the piston on its arrival at XV, the accelerating force is
downward and = A+ @G. [Let the student determine how
the detail of this problem wonld be changed, if the eylinder
were horizontal instead of vertical.]

.

60. Direct Central Impact. —Suppose two masses M, and M,
to be moving in the same right line so that their distance apart
continually diminishes, and that when the collision or impact
takes place the line of action of the mutual pressure coincides
with the line joining their centres of gravity, or centres of
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mass, as they may be called in this connection. This is called
a direct central impact, and the motion of each mass is varia-
bly accelerated and rectilinear during their contact, the only
force being the pressure of the other body. The whole mass
of each body will be considered concentrated in the centre of
mass, on the supposition that all its particles undergo simul-
taneously the same change of motion in parallel directions.
(This is not strictly true; the effect of the pressure being
gradually felt, and transmitted in vibrations. These vibrations
endure to some extent after the impact.) When the centres
of mass cease to approach each other the pressure between the
bodies is a maximum and the bodies have a common velocity ;
after this, if any capacity for restitution of form (elasticity)
exists in either body, the pressure still continues, but dimin-
ishes in value gradually to zero, when contact ceases and the
bodies separate with different velocities. Reckoning the time
from the first instant of contact, let 2’ = duration of the first
period, just mentioned ; ¢’ that of the first 4 the second (resti-
tution). Fig. 68. Let M, and M, be the masses, and at any

P 52 instant during the contact let v, and v,
- g ", be simultaneous values of the velocities
My M, of the mass-centres respectively (reckon-

Fio. 68, ing velocities positive toward the right),

and P the pressure (variable). At any instant the acceleration
of M is p,= — (P =+ M), while at the same instant that of

M,is p,= + (P + M,); M, being retarded, M, aceelerated,
in velocity. Hence (eq. 11., p = dv < df) we have

Mdv,= — Pdt; and Mdv,= -+ Pdt. . . (1)

Summing all similar terms for the first period of the impaect,
we have (calling the velocities before impact ¢, and ¢,, and the
common velocity at instant of maximum pressure C)

c i’
M, [, dv=~ f' Pit,ie, M0 —c)= — f Pdt; (2)

, [ o, =+ f “Pdt,ie., M(C— o) = + f Pat.. (3)
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The two integrals are identical, numerically, term by term,
since the pressure which at any instant accelerates M, is nu-
merically equal to that which retards M, ; hence, though we do
not know how P varies with the time, we can eliminate the
definite integral between (2) and (3) and solve for C. If
the impact is ¢nelastic (i.e., no power of restitution in either
body, either on account of their total inelasticity or damaging
effect of the pressure at the surfaces of contact), they continne
to move with this common velocity, which is therefore their
final velocity. Solving, we have

Mo+ My,
= W. e e e e s e (4)

Next, supposing that the impact is partially elastic, that the
bodies are of the same material, and that the summation

¢

tl’
‘/;, Pdt for the second period of the impact bears a ratio, ¢,
to that /w Pdt, already used, a ratio peculiar to the material,

if the impact is not too severe, we have, summing equations
(1) for the second period (letting ¥V, and ¥, = the velocities
after impact),

o, [ v, =— [ Pdt,ie, M(V,— b): — o Pat; (5)

V’ " 4
N, |, dv,=+ ), Pdiie, M(V,— O)=+e¢ A Padt. (6)
¢ i8 called the coeflicient of restitution.
Having determined the value of [ tht from (2) and (3) in

terms of the masses and initial velocities, substitute it and that
of C, from (4), in (5), and we have (for the final velocities)
V.=[HM,0,+ Me,— eM(0,—c,)] + [M,+ H]; . (7)
and similarly
V.=[He + Mot eM(c,—c)] + [M,+ M) . (8)
For e =0, i.e., for inelastic impact, V.= V,=C in eq. (4); for
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e =1, or elastic tmpact, (7) and (8) become somewhat simpli-
fied.

To determine e experimentally, let a ball (M) of the sub-
stance fall upon a very large slab (M,) of the same substance,
‘noting both the height of fall A,, and the height of rebound H,
Considering M, a8 = o, with  ~

a= ¥ 2gh, Vi=— ¥ 2gH, and c,=o,
eq. (7) gives
—4 29E’=—e‘/m:;3-9= H, =k,
Let the student prove the following from equations (2), (3),
(5), and (6):
(a) For any direct central impact whatever,

Mo+ Me,= MV, + M7V,

[The product of a mass by its velocity being sometimes
called its momentum, this result may be stated thus:

In any direct central impact the sum of the momenta before
impact is equal to that after impact (or at any instant during
impact). This principle is called the Conservation of Momen-
tum. The present is only a particular case of a more general
proposition.

It may be proved C, eq. (4), is the velocity of the centre of
gravity of the two masses before impact; the conservation of
momentum, then, asserts that this velocity is unchanged by the
impact, i.e., by the mutual actions of the two bodies.]

() The loss of velocity of M, and the gain of velocity of
M,, are twice as great when the impact is elastic as when in-
elastic.

() Ife=1,and M, = M, then V, = + ¢c5,and V, =¢c,.

Ezample.—Let M, and M, be perfectly elastic, having weights = 4 and
5 Ibs. respectively, and let ¢, = 10 ft. per sec. and ¢; = — 6 ft. per sec.
(i e., before impact M, 8 moving in a direction conirary io that of M,).
By substituting in eqs. (7)and (8), withe =1, M, =4 +g,and My =5+g,
we have

V,=%[4x 10+5x(—6)—5(10—(—6))]=—7.7ft.petseo.

V.=%[4 x10 + 5 x (—6)+4(10—(—6))]= +8.2 th por e

as the velocities after impact. Notice their directions, as indicated by their
signs ‘
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CHAPTER 1II.
«VIRTUAL VELOCITIES.”

61. Definitions.—If a material point is moving in a direction
not coincident with that of the resultant force acting (as in
curvilinear motion in the next chapter), and any element of its
path, ds, projected upon this force;* the length of this projec-
tion, du, Fig. 69, is called the “ VirTuaL VELoOITY” of the
force, since du -+ d¢ may be considered the veloc-

-ity of the force at this instant, just as ds <+ d¢ is d,/
that of the point. The product of the force by 5& P

its du will be called its virtual moment, reckoned di~p
+ or — according as the direction from O to D is  F'& ®
the same as that of the force or opposite.

62. Prop. L—T%e virtual moment of a force equals the
algebraic sum of those of its components. Fig. 70. Take the
e—emeop direction of ds as an axis X; let P, and P,
" be components of P; a,, a,, and a their
angles with X. Then (§16) Pcos a =
P,cosa,+P,cosa,, Hence P(dscos a)=
P (ds cos @) + P,(ds cos a,). But ds cos a
= the projection of ds upon P, i.e., = du;
Fio. 70. ds cos a, = du,, etc.; .. Pdu= Pdu, +
Pdu, If in Fig. 70 a, were > 90° evidently we would
have Pdu= — Pdu,+ Pdu,. ie., Pdu, would then be
negative, and O, would fall behind O; hence the definition
of 4 and — in § 61. For any number of components the
proof would be similar, and is equally applicable whether they
are in one plane or not.

63. Prop. IL.—7%e sum of the virtual moments equals zero,
Jor concurrent forces in equilibrium.

* We should rather say “ projected on the line of action of the force;”
but the phrase used may be allowed, for brevity.
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(If the forces are balanced, the material point is moving in
a straight line if moving at all.) The resultant force is zero.
Hence, from § 62, £ ,du, + P,du,+ete. = 0, having proper
regard to sign, i.e., Z(Pdu) = 0.

84. Prop. IIL.—The sum of the virtual moments equals zero
for any small displacement or motion of a rigid body in equi-
librium under non-concurrent forces in a plane; all points of
the body moving parallel to this plane. (Although the kinds
of motion of a given rigid body which are consistent with
balanced non-concurrent forces have not yet been investigated,
we may imagine any slight motion for the sake of the alge-
braic relations between the different du’s and forces.)

First, let the motion be a translation, all
points of the body describing equal parallel
lengths = ds. Take X parallel to de; let a,
% etc., be the angles of the forces with X.
Then (§35) Z(Pcosa) =0} .. ds=(P cos a)
= 0; but ds cos a, ._du‘,dscos a, = du,;
ete.; .. 2(Pdu)=0. Q. E.D.

Secondly, let the motion he a rotation

Fio. 71. through a small angle d6 in the plane of the
forces about any point 0 in that plane, Fig. 72. With Oasa pole
let p, be the radius-vector of the point of application of P,, and
@, its lever-arm from O; similarly for the

other forces. In the rotation each point of .,.."“q,’}/ﬁ

application describes a small are, ds,, ds,, /’da‘/ /P'
- ete., proportional to p,, p,, ete., since ds, : "’a/ Pt vy R

= pd6, ds, = p,df, ete. From § 36, /. {3@9’*{;@’

P.a,+ etc. = 0 ; but from similar triangles ~ .. -, ;

ds,:du,::p, ta,; coa, = pdu, + ds, ~/

= du, + db; similarly a, = du, + db, etc. Fro. 72

Hence we must have [Pdu,+ Pdu,+...]+ d6 =0, ie.,
2(Pdu) =0. Q.E.D.

Now since any slight displacement or motion of a body may
be conceived to be accomplished by a small translation fol-
lowed by a rotation through a small angle, and since the fore-
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going deals only with projections of paths, the proposition is
established and is called the Principle of Virtual Velocities.

[A similar proof may be used for any slight motion what-
ever in space when a system of non-concurrent forces is bal-
anced.] Evidently if the path (ds) of a point of application is’
perpendicular to the force, the virtual velocity (du), and coun-
sequently the virtual moment (Pdw) of the force are zero.
Hence we may frequently make the displacement of such a
character in a problem that one or more of the forces may be
excluded from the summation of virtual moments.

85. Connecting-Rod by Virtual Velocities.—Let the effective
steam-pressure P be the means, through the connecting-rod
and crank (i.e., two links), of raising the weight & very slowly;
neglect friction and the weight of the links themselves. Con-
sider AB as free (see () in Fig. 73), BC also, at (¢); let the

\ \Q
: \ t - 3
—& /ﬁm/
(a.) Kx (b.) (c.)

Fia. 3.

“small displacements” of both be simultaneous small portions
of their ordinary motion in the apparatus. 4 has moved to A4,
through dxz; B to B,, through ds, a small arc; C has not
moved. The forces acting on A B are P (steam-pressure), NV
(vertical reaction of guide), and N" and 7’ (the tangential and
pormal components of the crank-pin pressure). Those on BC
are ¥’ and T (reversed), the weight @, and the oblique pressure
of bearing ’. The motion being slow (or rather the accelera.
tion being small), each of these two systems will be considered as
balanced. Now put 3(Pdu) = 0 for 4B, and we have

Piz+NXO+N X0—Tds=0. . . (1)
For the simultaneous and corresponding motion of BC,

S(Pdu) = 0 gives
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N X0+ Tds— Gdh+ P x0=0, . . (2

a@h being the vertical projection of G’s motion.
From (1) and (2) we have, easily, Pde — Gdh =0, . (8)
: B which is the same as we might have
(. 2h  obtained by putting Z(Pdu) = 0 for

N .
P 1 }/ B N
—»A‘:;':i'; e X\ p- the two links together, regarded col-
1

lectively as a free body, and describ-
Fu. 1. ing a small portion of the motion
they really have in the mechanism, viz., (Fig. 74,)

Piz+ NxX0—Gdh4+P X0=0. . . (§

We may therefore announce the—

66. Generality of the Principle of Virtual Velocities.—./f any
mechanism of flexible inextensible cords, or of rigid bodies
jointed together, or both, at rest, or in motion with very small
accelerations, be considered free collectively (or any portion of
it), and all the external forces put in; then (disregarding
mutual frictions) for a small portion of its prescribed motion,
S(Pdu) must = 0, in which the du, or virtual velocity, of
each force, P,1is the projection of the path of the point of
application upon the force (the product, Pdu, bemg+ or —
according to § 61).

67. Erample—In the problem of § 65, having given the
weight @, required the proper steam-pressure (effective) P to
hold & in eqni]ibrium or to raise it uniformly, if already in
motion, for a given position of the links. That is, Fig. 75,

given a, r, ¢, «, and g, re- .,'\[B-a i
quired the ratio dA : dz; for, /S‘;" p
from equation (3), § 65, P 7 o
= G(dh : dw). The projec- , __f';, Vs ‘_,/ E"\,_._\ 8
tions of dw and ds upon AB ~ dz A, P ——————
will be equal, since AB = Fia. .

A, B, and makes an (infinitely) small angle with A4, B, i..,
de cos a = dscos (8 — a). Also, dh = (¢ : r)ds sin 8.
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Eliminating ds, we have,
¢ sin B cos «

rcos (S — a)

dk  c¢sin B cos a
dz = reos(f —a)’ P=@

68. When the acceleration of the parts of the mechanism is
not practically zero, 2(Pdu) will not = 0, but a function of
the masses and velocities to be explained in the chapter on
Work, Energy, and Power. If friction occurs at moving joints,
enough “ free bodies” should be considered that no free body
extend beyond such a joint ; it will be found that this friction
cannot be eliminated in the way in which 7" and V7 were, in
§ 65.

69. Additional Problems; to be solved by “ virtual velocities.”
ProBLEM 1.—Find relations between the forces acting on a
straight lever in equilibrium ; also, on a bent lever.

ProBLEM 2.—When an ordinary copying-press is in equilib-
rium, find the relation between the force applied horizontally
and tangentially at the circumference of the wheel, and the
vertical resistance under the screw-shaft.

Bolution.—Considering free the rigid body consisting of the wheel and
screw-shaft, let R be the resistance at the point of the shaft (pointing
along the axis of the shaft), and P the required horizontal tangential force
at edge of wheel. Let radius of wheel be . Besides R and P there are
also acting on this body certain pressures, or *‘ supporting forces,” consist~
ing of the reactions of the collars, and reactions of the threads of nut against
the threads of screw. Denote by s the ‘‘ piick’’ of the screw, i.e., the dis-
tance the shaft would advance for a full turn of the wheel. Then if we
imagine the wheel to turn through a small angle df, the corresponding

advance, ds, of the shaft would be ;—%9. from the proportion s: ds :: 27 : d5.

The path of the point of application of' P would be a small portion of
a helix, the projection of which on the line of P is »d, while ds projects
in its full length on the line of the force R. In the case of each of the
other forces, however, the path of the point of application is perpendicular
to the line of the force (which iIs normal to the rubbing surfages, friction
being disregarded). Hence, substituting in =(Pdu) = 0, we bave

+P.7d—R.ds40+4+0=0;
whence
ds
mo

= =2
P= R—Q”.R.
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CHAPTER IIL
CURVILINEAR MOTION OF A MATERIAL POINT.

[Motion in a plane, only, will be considered in this chapter.]

70. Parallelogram of Motions.—It is convenient to regard
the curvilinear motion of a point in a plane as compounded, or
made up, of two independent rectilinear motions parallel
respectively to two co-ordinate axes X and Y, as may be ex-
plained thus: Fig. 76. Consider the
drawing-board CD as fixed, and let the
head of a Z7'square move from A4
toward B along the edge according to
any law whatever, while a pencil moves
from A/ toward @ along the blade. The
result is a curved line on the board, whose

Fia. 7. form depends on the character of the
two X and Y component motions, as they may be called. If
matime #, the Z-square head has moved an X distance = M N,
and the pencil simultaneously a ¥ distance = M P, hy com-
pleting the parallelogram on these lines, we obtain 7, the
position of the point on the board at the end of the time ¢.
Similarly, at the end of the time ¢, we find the point at &’

71. Parallelogram of Velocities.—Let the X and ¥ motions
be uniform, required the resulting motion. Fig. 77. Letec,
and ¢, be the constant uniform X and Y velocities. Then in
any time, ¢, we have # = ¢, fand y =
¢t; whence we have, climinating ¢,
@ -+ Y = ¢, -~ ¢, = constant, i.e., x is
proportional to ¥, i.c., the path is a
straight line. Laying off 04 = ¢,
and AB = ¢,, B1s a point of the path, .
and OB 1s the distance described by the point in the first
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second. Since by similar triangles OR :2:: 0B : ¢,, we
have also OR = OB . ¢ ; hence the resultant motion is uniform,
and its velocity, OB = c, 48 the diagonal of the parallelogram
Jormed on the two component velocities.

Corollary.—If the resultant motion is curved, the direction
and velocity of the motion at any point will be given by the
diagonal forined on the component velocities at that instant.
The direction of motion is, of course, a tangent to the curve.

72. Uniformly Accelerated X and Y Motions.—The initial
velocities of both being zero. Required the resultant motion.
Fig. 78. From § 56, eq. (2) (both ¢, and ¢,
being = 0), we have z = $p,2’ and y =
L, whence 2 + y = p,+ p,= coustant,
and the resultant motion is in a straight
line. Conceive lines laid off from O on X O+ ¥~
aud Y to represent p, and p, to scale, and Fia. 8.
form a parallelogram on them. From similar triangles (OR
being the distance described in the resnltant motion in any
time?), OR : ¢ :: OB : p,; ~. OB =30B¢. Hence, from the
form of this last equation, the resnltant motion is uniformly
accelerated, and its acceleration is OB = p, (on the same sgale
as . and p,).

This might be called the parallelogram of accelerations, but
is really a parallelogram of forces, if we consider that a free
material point, initially at rest at O, and acted on simulta-
neously by constant forces P, and P, (so that p, = P, +~ M
and p, = P, + M), must begin a uniformly accelerated recti-
linear motion in the direction of the resultant force, having no
injtial velocity in any direction.

78. In general, considering the point hitherto spoken of asa
Jree material point, under the action of one or more forces, in
view of the foregoing, and of Newton’s second law, given the
initial velocity in amount and direction, the starting-point,
the initial amounts and directions of the acting forces and the
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laws of their variation if they are not constant, we can resolve
them into a single X and a single Y force at any instant,
determine the X and ¥ motions independently, and afterwards
the resultant motion. The resultant force is never in the direc-
tion of the tangent to the path (except at a point of inflection).
The relations which its amount and direction at any instant
bear to the velocity, the rate of change of that velocity, and
the radius of curvature of the path will appear in the next

paragraph.

74. General Equations for the curvilinear motion of a ma-
terial point in a plane —The motion will be considered result-
&\ ing from the composition of

" independent X and Y motions,

X and Y being perpendicular to
each other. Fig. 79. In two
‘M ' M consecutive equal times (each
EE e\ =dt), let do and do’ = small

- K spaces due to the X motion ;
% s d’:; afxd dy and CK = dy/, due to
‘ the ¥ motion. Then ds and
nis_X ds’ are two consecutive elements
Fre. . of the curvilinear motion. Pro-
long ds, making BE = ds; then EF = &z, CF = d'y, and
CO = d's (EO being perpendicular to BE). Also draw CZL
perpendicular to BG and call CL d'n. Call the velocity of
the X motion v,, its acceleration p,; those of the ¥ motion,
vy and p,. Then,
dz d dv, dv a
= ”v*—?rty’ Ps=7t"=%sr§ andp,:dt" dt‘:/.
For the velocity along the curve (i.e., tangent)
v = ds -+ dt, we shall have, since ds* = da* 4 dy,

ool = () + (e

Hence » is the diagonal formed on v, and o, (as in § 71).
Let p, = the acceleration of v, i.e., the tangential acceleration.
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then p, = d's <+ d?', and, since d’s = the sum of the pm]eo-
tions of ZF# and CF on B(C, ie., d's = d'z cos a+ d'ysin a,
we have

%_fg a+dt’ sin a; i.e., p; = p, cos @ 4 p, sin a. (2)

By Normal Acceleration we mean the rate of change of the
velocity in the direction of the normal. In describing the ele-
ment A B = ds, no progress has been made in the direction of
the normal BH i.e., there is no velocity in the direction of the
normal; but in describing BC (on account of the new direc-
tion of path) the point has progressed a distance CL (call it
d'n) in the direction of the old normal BH (though none in
that of the new normal C7). Hence, just as the tang. acc.

ds’ —ds d's CL — zero d'n
== —ap® the normal accel. = —F =3
It now remains to express this normal acceleration (= p,) in
terms of the X and ¥ accelerations. From the figure, CZ
=CM = ML,ie.,
d'n = &'y cos @ — &'z sin a {since EF = d'»} ;

dn ady do
S gp = gp C®a — g sina
Hence Pn=pyco8a—pysina.. . . . . (3)
The norm. ace. may also be expressed in terms of the tang.
velocity @, and the radius of curvature 7, as follows:
d¢ = rda,orda=ds +r; also d'n=dsda,=ds" = r
ds'\* 1 v
i.e.,‘fi—':-," = (E o O Pa=ee 0. (€))
If now, Fig. 80, we resolve the forces X = Mp, and ¥
= Mp,, which at this instant account for the
X and Y accelerations (M = mass of the
material point), into components along the
i tangent and normal to the curved path, we
shall have, as their equivalent, a tangentml
force

T = Mp, cos a + Mp, sin a,
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and a normal force
N = Mp, cos «a — Mp, sin a.

But [see equations (2), (3), and (4)] we may also write

T=Mp =M, md N=Mp,=H2. . ()
Hence, if a free material point s moving in a curved path,
the sum of the tangential components of the acting forces must
equal (the mass) X tang. accel.; that of the normal components,
= (the mass) X normal accel. = (mass) X (square of veloc. in
path) + (rad. curv.).

It is evident, therefore, that the resultant force (= diagonal
on 7"and &V or on X and ¥, Fig. 80) does not act along the tan-
gent at any point, but toward the concave side of the path; un-
less » = oo,

Radius of curvature—From the line above eq. (4) we
have d'n = ds™ =+ r; hence (line above eq. (3)), ds” = r =
d'y cos a — &'z sin a; but cos a = dz - ds,and sin a = dy + ds,

ds” dx dy ds"ds dad'y — dyd’z
’ . = dz’[ dx' ] ;

..—r—=d'y$— wz‘g,or

ds™ds d ,
AL dw’dl:d—z = do'd (tan a),

e () (2] 220,
or, r=1v -+ %,gd_%;_g B ()

ie.,

which is equally true if, for », and tan a, we put v, and
tan (90° — a), respectively.
Change in the velocity square.—Since the tangential accelera-

. dv dv .
tion =, = p,, we have dsa_iz = pds; ie.,

ds v = ¢

E,Zdv =pds, or vdv =pds and .. g = f Pds. (7)
having integrated between any initial point of the curve where
v ='¢, and any other point where v = ». This is nothing
more than equation (IT1.), of § 50.
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75. Normal Acceleration. Second Method. —Fig. 81. Let
(' be the centre of curvature and OD = 2r. Let OB’ be a
portion of the osculatory parabola (vertex at p,

0; any osculatory curve will serve). When \\\
ds is described, the distance passed over in % \\\
the direction of the normal is AB; for 2ds, b
it would be A’B’ = 44B (i.e, as the
square of OB’; property of a parabola), Fio. 81.

and 8o on. Hence the motion along the normal is uniformly
accelerated with initial velocity = O, since the distance AB,
varies as the square of the time (considering the wmotion along
the curve of uniform velocity, so that the distance OB is di-
rectly as the time). If p, denote the accel. of this uniformly
accelerated motion, its initial velocity being = 0, we have (eq.
2, §56) AB = §p,df’, i.e, p, = 24B + df". But from the
similar triangles O.DB and OAB we have, AB:ds::ds: 2r,
hence 2AB=ds" =7, .. po=ds" +rdf =" + 1.

76. Uniform Circular Motion. Centripetal Force.—The ve-
locity being constant, p, must be = 0, and .". 7'(or = 7' if there
are several forces) nust = 0. The resultant of all the forces,
therefore, mnst be a normal force = (Mc' =+ ) = a con-
stant (eq. 5, § 74). This is called the “deviating force,”
or “ centripetal force ;” without it the body would continue
in a straight line. Since forces always occur in pairs (§3),
a “centrifugal force,” equal and opposite to the “centri-
petal” (one being the reaction of the other), will be found
among the forces acting on the body to whose constraint the
deviation of the first body from its natural straight course is
due. For example, the attraction of the earth on the moon
acts as a centripetal or deviating force on the latter, while the
equal and opposite force acting on the earth may be called
the centrifugal. If a small block moving ona
smooth horizontal table is gradually turned from
its straight course A8 by a fixed circular guide,
tangent to A B at B, the pressure of the gnide
against the block is the centripetal force Mc*+ »
directed foward the centre of curvature, while
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the centrifugal force M¢* < r is the pressure of the block
against the guide, directed away from that centre. The cen-
trifugal force, then, is never found among the forces acting on
the body whose circular motion we are dealing with.

The Conical Pendulum, or governor-ball.—Fig. 82. Ifa
waterial point of mass = M = G + g, suspended on a cord of
length = /, is to maintain a uniform cir-
oular motion in a horizontal plane, with a
given radius », under the action of gravity

A ¥ and the cord, required the velocity ¢ to be
¢ 77 A req y
G

given it. At B we have the body free.
The only forces acting are & and the cord-

Fia. 83, tension . The sum of their normal com-
ponents, i.e.,, ZN, must = Mc' + », ie., P sin a = Mc' =+ r;
but, since 3 (vert. comps.) = 0, P cos « = G. Hence
Gtan a= @'+ gr; .. c="¥grtan . Let v = number of
revolutions per unit of time, then = ¢ + 27r = Vg = 27 Vk;
ie., is inversely proportional to the (vertical projection)t of
the cord-length. The time of one revolution is = 1 < u.

Elevation of the outer rail on railroad curves (considera-
tions of traction disregarded).—Consider a single car as a
material point, and free, having a given P)
velocity = ¢. P is the rail-pressure
against the wheels. So long as the car Q——-#’—R’k
follows the track the resultant R of Pl \
and & must point toward ‘the centre of
curvature and have a value = M¢* + 7.
But R=@ tan a, whence tan @ = ¢'+ g».
If therefore the ties are placed at this
angle a with the horizontal, the pressure
will come upon the tread and not on the flanges of the wheels ;
in other words, the car will not leave the track. (This is really
the same problem as the preceding )

Apparent weight of a body at the equator.—This is less than
the true weight or attraction of the earth, on account of the
uniform circular motion of the body with the earth in its
diurnal rotation. If the body hangs from a spring-balance,

Fia. 84.
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whose indication is @ lbs. (apparent weight), while the true
attraction is ¢’ lbs.,, we have ¢/ — @ = Mc* +~r. For M
we may use G = g (apparent values); for » about 20,000,000
ft.; for ¢, 25,000 miles in 24 hrs., reduced to feet per second.
It results from this that @ is < G’ by y}yG’ nearly, and
(since 17* = 289) hence if the earth revolved on its axis seven-
teen times as fast as at present, ¢ would = 0, i.e., bodies
would apparently have no weight, the earth’s attraction on
them being just equal to the necessdry centripetal or deviating
force necessary to keep the body in its orbit.

Centripetal force at any latitude.—If the earth were a ho-
mogeneous liquid, and at rest, its form would be spherical ; but
when revolving uniformly about the polar diameter, its form
of relative equi]ibrium (i.e., no motion of the particles relatively
to each other) is nearly elhpsoxdal the polar diameter being an
axis of symmetry.

Lines of attraction on bodies at its surface do not intersect
in a common point, and the centripetal force requisite to keep
a suspended body in its orbit (a small circle of the ellipsoid),
at any latitude £ is the resultant, ¥, of the attraction or true
weight & directed (nearly) toward the centre, and of & the
tension of the string. Fig. 85. @ = theapparent weight, in-
dicated by a spring-balance and M 4 is its ;
line of action (plumb-line) normal to the
ocean surface. Evidently the apparent
weight, and consequently g, are less than (-
the true values, since 2V must be perpen-
dicular to the polar axis, while the trne
values themselves, varying inversely as Fio. 8.
the square of MC, decrease toward the equator, hence the ap-
parent values decrease still more rapidly as the latitude dimin.
ishes. The following equation gives the apparent g tor any
latitude B, very nearly (units, foot and second):

g = 82.1808 — 0.0821 cos 2.

EQuAToR

(The value 32.2 is accurate enough for practical purposes.!
Since the earth’s axis is really not at rest, but moving abou



80 MECHANICS OF ENGINEERING.

the sun, and also about the centre of gravity of the moon and
earth, the form of the ocean surface is periodically varied, i.e.,
the phenomena of the tides are produced.

77. Cycloidal Pendulum.—This consists of a material point
at the extremity of an imponderable, flexible, and inextensible
cord of length =/, confined to the arc of a cycloid in a ver-
tical plane by the cycloidal evolutes shown in Fig. 86. Let
the oscillation begin (from rest) at 4, a height = A above 0

\ ',/" » .\\ M/

A A s
~. '"'-71,-/ y, &

g .

Fia. 86. Fia. 87.

the vertex. On reaching any lower point, as B (height = 3
above O), the point has acquired some velocity v, which is at
this instant increasing at some rate = p. Now counsider the
point free, Fig. 87; the forces acting are P the cord-tension,
normal to path, and & the weight, at an angle @ with the
path. From § 74, eq. (5), 2T = Mp, gives

Gecos @+ Pcos90° = (G + g)pe; <o =g cosB@P
Hence (eq. (7). § 74), vdv = p.ds gives
wdy = g cos @ds; but dscos ¢ = — dz; .. vdv = — gde.
Summing between A4 and B, we have

[:’k’v’ = —g/,}iz; or o = 2(h — 2);

the same as if it had fallen freely from rest through the height
h — 2. (This result evidently applies to any form of path
when, besides the weight G, there 18 but one other force, and
that always normal to the path.)

From SN = Mv* +r, we have P — G sin ¢ = Mo =+,
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whence P, the cord-tension at any point, may be found (here
r,= the radius of curvature at any point = length of straight
portion of the cord).

To find the time of passing from A to O, a half-oscillation,
substitute the above value of ¢' in » = ds + d, putting ds’
= da* 4 dz', and we have df' = (do" + d2") = [2¢(h — 2)].
To find dz in terms of dz, differentiate the equation of the
curve, which in this position is ’

@=r ver. sin."1 (2 +7) + ¥2rz — 2°;
whence i :

do rdz (r—2)dz _ (2r —2)dz,

= Vorz—2" ' VYo%z — 2 %%z — 2

S

(» =radius of the generating circle). Substituting, we have

_ [r (=do)
dt—\/g Viz— 2’

Lt—\/—fi/lw—z \/;Z[?er.sin.“fz: 7!\/;.

Hence the whole oscillation occupies a time = 7 47 + ¢
(since I = 4r). This is independent of A, i.e., the oscillations
are #ochronal. This might have been proved by showing that
P i8 proportional to OB measured along the curve; ie., that
the motion is karmonic. (§59, Prob. 2.)

78. Simple Circular Pendulum.—If the material point oscil-
Iates in the arc of a circle, Fig. 88, proceeding
as in the preceding problem, we have finally,
after integration by series, as the time of a full
oscillation,

2[‘#"\/‘[1 T +2§6 ;"" :' °

Hence for a small 4 the time is nearly # ¥ =+ ¢, and the os-
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cillations nearly isochronal. (For the Compound Pendulum,
see §117.)

79. Change in the Velocity S8quare.—From eq. (7), § 74, we
have }(v* — ¢*) = /pds. But, fromn similar triangles, du be-
ing the projection of any ds of the path upon the resultant
force R at that instant, Bdw = 7ds (or, Prin. of Virt. Vels.
§62, Rdu = Tds+ N X 0). 7 und N are the tangential and
normal components of . Fig. 89. Hence, finally,

M —3MS =fRdu, . . . . . (9)

for all elements of the curve between any two points. In gen-

Midiss T eneral & is different in amount and direc-

@y { ;"? tion for each ds of the path, but dw is the
Nb—_ \dR h’ distance through which & acts, in its own

Fie. 8. direction, while the body describes any ds;
Rdu is called the work done by & when ds is described by the
body. The above equation is read : The difference between the
initial and final kinetic energy of a body = the work done by
the resultant force in that portion of the path.
(These phrases will be further spoken of in Chap. V1.)
Application of equation (a) to a planet in its orbit about
the sun.—Fig. 90. Here the only force at any instant is the at-
traction of thesun & = ( + u* (see Prob. 3, §59),
where € is a constant and w the variable radius \
vector. As u diminishes, » increases, therefore | \¢
dv and .du have contrary signs; hence equation RY @y \38
(@) gives (¢ being the velocity at some initial /\\?
R \

point O) ity

}_M -——Mc_—o u:(lnza _1_.___] ®

2 L2479 u 'M.

o, =.\/ ¢+ 11_1[;: - ;].which isindepend-

ent of the direction of the initial velocity e.

Nore.—If u, were = inflnity, the last member of equation (3) would re-
duce to C + u,, and is numerically the quantity called potential in the
theory of electricity.
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Application of eq. (a) to a projectile in vacuo.—@, the
body’s weight, is the only force acting, and O3 X
therefore = R, while ¥ = G+ g. There- \’L{
fore eqnation (a) gives dy=du

¢ o, —c’ " N
7 =6 1y =6y; e‘—_'R\\\
K2\

». v, = ¥ 4 2¢y,, which is independent of Fra. 1.
the angle, a, of projection.

Application of equation (a) to a body sliding, without fric-
tion, on a fixed curved guide in a vertical plane; initial velo-
city = ¢ at O.—Since there is some pressure at each point be-
tween the body and the guide, to consider the body fres in
space, we must consider the guide removed and that the body

X describes the given curve as a re.

o= 5~ sult of the action of the two forces,

AN its weight &, and the pressure P,

AN of the guide against the body. &

dy| \“;{i}: is constant, while P varies from
v

I

?//\ point to point, though always (since
Y G b\w there is no friction) normal to curve.
Fio. 2. At any point, & being the resultant

of @ and P, project ds upon R, thus obtaining du; on G,
thus obtaining dy; on P, thus obtaining zero. But by the
principle of virtual velocities (see § 62) we have Rdu = Gdy
+ P X zero = Gdy, which substituted in eq. (a) gives

G1 V1 1
-§('v" ) =[ Gdy:G'[ dy=Gy; ..v,= ¥c'+29y,

and therefore depends only on the wertical distance fallen
through and the initial velocity, i.e., is independent of the
form of the guide.

As to the value of P, the mutual pressure between the guide
and body at any point, since 2V must equal Mo* < 7, » being
the variable radius of curvature, we have, as in § 77, /

P— @sinp=Mv'+r; ... P= Gsin 4 (v* +g7)].
As, in general, @ and r are different from point to point of
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the path, P is not constant. (The student will explain how 2
may be negative on parts of the curve, and the meaning of
this circumstance.)

80. Projectiles in Vacuo.—A ball is projected into the air
Y (whose resistance is neglected, hence the
° /Ir’ phrase ¢n vacuo) at an angle = a, with the
g horizontal ; required its path; assuming it
AYP YX confined to a vertical plane. Resolve the
~—2x—, motion into independent horizontal (X )

Fio. 8. and vertical (XY) motions, &, the weight,
the only force acting, being correspondingly replaced by its
horizontal component = zero, and its vertical component
= — @. Similarly theinitial velocity along X = ¢, = ¢ cos a,,
along ¥, =¢, = csina,. The X acceleration =p, =0+ M
= 0, i.e., the X motion is uniform, the velocity v, remnains
= ¢, = ccos a, at all points, hence, reckoning the time from O,
at the end of any time ¢ we have

z=clcsa) . . . . . . . (1)

In the ¥ motion, p, = (— G) +~ M = — g, i.e., it is uniformly

retarded, the initial velocity being ¢, = ¢ sin a,; hence, after

any time 2, the ¥ velocity will be (see § 56) v, = ¢ sin a, — ¢,

while the distance

y=c@Eina)—4g . . . . . (2

Between (1) and (2) we may eliminate ¢, and obtain as the
equation of the trajectory or path

"

g
2¢* cos' a,
For brevity put ¢* = 2gA, A being the ideal Aeight due to the
wvelocity ¢, i.e., ¢ + 2g (see § 53; if the ball were directed ver-
tically upward, a height A = ¢* < 2¢g would be actually at-
tained, a,being = 90°), and we have

y=wtan a, —

w’

4} cos’ a, ""(3)

This is easily shown to be the equation of a parabola, with 1ts
axis vertical.

y =@ tan a, —
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The horizontal range. —-Fxg 94. Putting y =0 in équa-
tion (3), we obtain

®
& [tan a, — m] = O’ Y}
which is satisfied both by @ = 0 (i.e., at the o fUm 5 X

origin), and by # = 4A cos a, sin a,. Hence -
the horizontal range for a given ¢ and a, is Fre. 84
@, = 4h cos a, sin a, = 24 sin 2a,. :

For a, = 45° this is a maximum (¢ remaining the same),
being then = 2Ai. Also, since sin 2a, = sin (180° — 2a,) =
sin 2(90° — a,), therefore any two complementary angles of
projection give the same horizontal range.’

Greatest herght of ascent ; that is, the value of y maximum,
= yn—PFig. 94. Differentiate (3), obtaining

dy @
Zw = 0% T oo ay

which, put = 0, gives @ = 24 sin «, cos a,, and this value of
2 in (3) gives yn = 4 sin® a,

(Let the student obtain this more simply by considering the
Y motion separately.)

To strike a given point; ¢ being given and a, required.—
Let 2/ and 3’ be the co-ordinates of the given point, and a,’
the unknown angle of projection. Substitute these in equa-
tion (3), % being known = ¢’ + 2¢, and we have

z” 1

8 e
Y=o tan &', — s o Putcoqa._1+m,a°n.

and solve for tan «,’, whence
tana,=[2h Lt VIA — a0 — dhy | +2.. . (4)

Evidently, if the quantity under the radical in (4) is negative,
tan a,’ is imaginary, i.e., the given point is out of range with
the given velocity of projection ¢ = #2gh; if positive, tan a,’
has two values, i.e., two trajectories may be passed through
the point; while if it is zero, tan a,” has but one value.

The envelope, for all possible trajectories having the same
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initial velocity ¢ (and hence the same A); i.e., the curve tan-
gent to them all, has but one point of contact with any one of
them ; hence each point of the envelope, Fig. 95, must have
o co-ordinates satisfying the com-
o X dition, 44" — o — 4hy/ =0 i.e.
X (see equation (4)), that there is
] but one trajectory belonging to it.

// / o ' A . Hence, dropping primes, the
. " equation of the envelope is 44* —
Fa. &. @' — 4hy = 0. Now take 0" asa

new origin, a new horizontal axis X", and reckon y” positive
downwards ; i.e., substitute # = @ and y = A — y”. The
equation now becomes z'”* = 4Ay’’; evidently the equation of
a parabola whose axis is vertical, whose vertex is at 0", and
whose parameter = 44 = double the maximum horizontal
range. O is therefore its focus.

The range on an inclined plane—Fig. 96. Let OC be
the trace of the inclined plane; its equation y
is ¥ = @ tan S, which, combined with the
equation of the trajectory (eq. 3), will give B |
the co-ordinates of their intersection C. oX—m——
That is, substitute ¥ = @ tan g in (3) and Fio. 96,
solve for @, which will be the abscissa 2,, of C. This gives

@ sin a, sin sin (a, —
o, = tan @, — tan g = ® — ﬂ: (e, ﬂ);
4h cos’ a cosa, cosf~ cos a,cos B

- @, = 4hcos a, sin (@, — f) = cos B, and the range OC,
which = @, <+ cos 8, is = (4h + cos’ f) cos a, sin (@, — £). (5)

The maximum range on a given inclined plame, B, ¢ (and
.~. k), remaining constant, while a, varies.—That is, required
the value of a, which renders OC a maximum. Differentiat-
ing (5) with respect to a,, putting this derivative = 0, we have
[4A < cos' f] [cos a, cos (@, — B) — sin a, sin (@, — B)] =0;
whence cos [a, + (@, — f)] = 0; i.e., 2a, — B = 90°; or,
a, = 45° 4+ 34, for a maximum range. By substitution this
maximum becomes known.

The velocity at any point of the path is v = ¥v,'+ o, =
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Y& — 2ctg sin a, 4 ¢*t* (see the first part of this § 80); while

. the téme of passage from O to any point whose abecisea is @ is

=&+ ¢ cos a,; obtained from equation (1). E.g., to reach

the point B, Fig. 94, we put @ = 2, = 44 sin « cos a, and ob-

tain ¢, = 2¢ sin «, = ¢g. This will give the velocity at B =
Ve =c.

81. Aotual Path of Projectiles.—Small jets of water, so long as
they remain unbroken, give close approximations to parabolic
paths, as also any small dense object, e.g., a ball of metal, hav-
ing a moderate initial velocity. The course of a cannon-ball,
however, with a velocity of 1200 to 1400 feet per second is
much affected by the resistance of the air, the descending
branch of the curve being much steeper than the ascending;
see Fig. 96a. The equation of this curve has not yet been
determined, but only the expression for the slope (i.e.,
dy : dz) at any point. See Professor Bart- .
lett’s Mechanics, § 151 (in which the body 7
is a sphere having no motion of rotation). m
Swift rotation about an axis, as well as an i
unsymmetrical form with reference to the
direction of motion, alters the trajectory
still further, and may deviate it from a vertical plane. The
presence of wind would occasion increased irregularity. See
Johnson’s Encyclopsdia, article ¢ Gunnery.”

Fia. 96a.

82. Special Problem (imaginary; from Weisbach’s Mechan-
ics. The equations are not homogeneous).—Suppose a ma-
' terial point, mass = M, to start

+7 from the point O, Fig. 97, with

a velocity = 9 feet per second

along the — Y axis, being sub-

) R jected thereafter to a constant
(o] attractive X force, of a value X

,L, = 12M, and to a variable ¥

force increasing with the time
Fio. 7. (in seconds, reckoned from 0),
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viz, ¥ = 8M¢. Required the path, ete. For the X motion
we have p, = X + M = 12, and hence

Vg ¢
A dv,=[pdt=12[dt; i.e., v, = 12¢;

and[dx:[t'v,dt;i.e.,a:=12‘/.“tdt=6t’.. 1)

For the ¥ motion p, = ¥ + M = 8¢, .'.'/_::’dv,=8‘/‘¢tdt;

ie,v,+9=4# and f'dy=fv ;

¢ t
. y.—..—4ft’dt—9fdt, or y=4£—9. . (9
Eliminate ¢ between (1) and (2), and we have, as the egua-

tion(?fﬂ‘epaﬂl" 1 +
y=:t§(§) :;:9(:65), N )

which indicates a curve of the third order.
The velocity at any point is (see § T4, eq. (1))
v=4Vo+o =4'4+9 . . . . . @
The length of curve measured from O will be (since v =
ds = dt)

8—fda 'vdt 4ft’dt+9fdt $£49% (5

The slope, tan a, at any point = v, + v, = (48" — 9) + 12¢,
dtana 4849
dt —1%,......(6)

The radius of curvature at any pomt (§ 74, eq. (6)), sub—
stituting v, = 12¢, also from (4) and (6), is

r=9 -+ | o> @ t;? a] ‘1§[4¢’ +9 . . (M

and the normal acceleration = v + r (eq. (4), § 74), becomes
from (4) and (7) p, = 12 (ft. per square second), a constant.
Hence the centripetal or deviating force at any point, i.e., the

and .-
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2N of the forces X and Y is the same at all points, and =
My +r = 12M.

From equation (8) it is evident that the curve is symmetrical
about the axis X. Negative values of ¢ and & would apply to
points on the dotted portion in Fig. 97, since the body may be
considered as having started at any point whatever, so long as
all the variables Liave their proper values for that point.

(Let the student determine how the conditions of this motion
could be approximated to experimentally.)

83. Relative and Absolute Velocities. —Fig. 98. Let M bea
material point having a uniform motion of velocity v, along a
straight groove cut in the deck of a steamer, which itself has
a uniform motion of translation, of velocity v,, over the bed of

a river. In one second M ad- & %_
\, §
\‘ .'"."

vances a distance v, along the
groove, which simultaneously has
moved a distance v, == A B with
the vessel. The absolute path of
M during the second is evidently Fo. 8.

w (the diagonal formed on v, and v,), which may therefore be
called the adsolute velocity of the body (considering the bed
of the river as fixed); while v, is its relative velocity, i.e., rela-
tive to the vessel. If the motion of the vessel is not one of
translation, the construction still holds good for an instant of
time, but v, is then the velocity of that point of the deck over
which ¥ is passing at this instant, and v, is M ’s velocity rela-
tively to that point alone.

Conversely, if M be moving over the deck with a given
absolute velocity = w, v, being that of the vessel, the relative
velocity », may be found by resolving w into two components,
one of which ghall be v, ; the other will be »,.

If w is the absolute velocity and direction of the wind, the
vane on the mast-head will be parallel to M7 1e., to v, the
relative velocity ; while if the vessel be rolling and the mast-
head therefore describing a sinnous path, the direction of the
vane varies periodically.
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Evidently the effect of the wind on the sails, if any, will
depend on v, the relative, and not directly on w the absolute,
velocity. Similarly, if w is the velocity of a jet of water, and
v, that of a water-wheel channel, which the water is to enter
without sudden deviation, or impact, the channel-partition
should be made tangent to », and not to w.

Again, the aberration of light of the stars depends on the
same construction ; v, is the absolute velocity of a locality of the-
earth’s surface (being practically equal to that of the centre);.
w is the absolute direction and velocity of the light from a
certain star. To see the star, a telescope must be directed
along M7, i.e., parallel to », the relative velocity; just as in
the case of the moving vessel, the groove must have the direc~
tion M7, if the moving material point, having an absolute-
velocity w, is to pass down the groove without touching its
sides. Since the velocity of light = 192,000 miles per second
= w, and that of the earth in its orbit = 19 miles per second
= »,, the angle of aberration SM7, Fig. 98, will not exceed
20 seconds of arc; while it is zero when w and , are parallel..

Returning to the wind and sail-boat,* it will be seen fronr
Fig. 98 that when v, = or even > w, it is still possible for v,
to be of such an amount and direction as to give, on a sail
properly placed, a small wind-pressure, having a small fore-and
aft component, which in the case of an ice-boat may exceed
the small fore-and-aft resistance of such a craft, and thus », will
be still further increased ; i.e., an ice-boat may sometimes travel
faster than the wind which drives it. This has often been
proved experimentally on the Hudson River.

* See § 571 for the mechanics of the sail-boat.
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CHAPTER 1V.
'MOMENT OF INERTIA.

[Nore.—For the propriety of this term and its use in Mechanics, see
§3 114, 216, and 229; for the present we deal only with the geometrical
nature of these two kinds of quantity.]

85. Plane Figures.—Just as in dealing with the centre of
gravity of a plane figure (§ 23), we had occasion to sum the
series /2dF, z being the distance of any element of area, &%,
from an axis ; so in subsequent chapters it will be necessary to
know the value of the series /2'd ¥ for plane figures of various
shapes referred to various axes. This summation /2’dF of
the products arising from multiplying each elementary area of
the figure by the square of its distance from an axis is called
the moment of inertia of the plans figure with respect to the
axis in question ; its symbol will be Z. If the axis is perpen-
dicular to the plane of the figure, it may be named the polar
mom. of inertia (§ 94); if the axis lies in the plane, the rec-
tangular mom. of inertia (§§ 90-93). Since the 7 of a plane
figure evidently consists of four dimensions of length, it may.
always be resolved into two factors, thus 7 = F%°, in which
F = total area of the figure, while ¥ = 41 <+ Z, is called the
radius of gyration, because if all the elements of area were
sitnated at the same radial distance, %, from the axis, the
moment of inertia would still be the same, viz.,

I=/%dF = kfdF = FF.

86. Rigid Bodies.—Similarly, in dealing with the rotary
motion of a rigid body, we shall need the sum of the series
/P'd M, meaning the summation of the products arising from
multiplying the mass M of each elementary volume & ¥ of a
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rigid body by the square of its distance from a specified axis.
This will be called the moment of inertia of the body with
respect to the particular axis mentioned (often indicated by a
subscript), and will be denoted by . As before, it can often
be conveniently written M %", in which M is the whole mass,
and % its “radius of gyration” for the axis used, % being
= ¢ 1+ M. 1f the body is homogeneous, the heaviness, y, of
all its particles will be the same, and we may write

I=/fpdM=(y—=g)/pdV=(y+g)Vk.

87. If the body is a homogeneous plate of an infinitely small
thickness = 7, and of area = F, we have / = (y <+ ¢g)/p'dV
=(y + 9)1/P'dF; ie., = (y = g) X thickness X mom. iner-
tia of the plane figurs.

88. Two Parallel Axes. Reduction Formula.—Fig. 99. Let
Z and Z' be two parallel axes. Then Z,
=/p'dM,and I, = fp""d M. But d being
the distance between the axes, 80 that a*
+ 8= d, we have p"= (z — a)’'+(y—b)"
=@ +9) + & — 2w — 2by,and -
I.: =/pd M+ dfd M — 2afa:dﬂ

Fio. 9. But /o' d M = I,, fdM = M, and from the
theory of the centre of gravity (see § 23, eq. (1), knowing that
dM =ydV + g, and .. that [ /yd V] + g=M ) we have fwd M
= Mz and fydM = My; hence (1) becomes

Le=L+ M@ — 22 —20), . . . - (@

in which @ and b are the 2 and y of the axis Z’; @ and y refer
to the centre of gravity of the body. If Z is a gravity-axis

(call it g), both zand y = 0, and (2) becomes
ILo=1L+Md.... or k' =k'+d. . . (3)
1t is therefore evident that the mom. of inertia about a grav-

ity-axis is smaller than about any other parallel axis.
Eq. (8) includes the particular case of a plane figure, by
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writing area instead of mass, i.e., when Z (now g) is a gravity-
axis,
If = 1; + Fd‘. * e e o . (4)

89. Other Reduction Formuls; for Plane Figures.—(The axes
here mentioned lie in the plane of the figure.) ¥or two sets
of rectangular axes, having the same origin, the following holds
good. Fig. 100. Since

I =/ydF, and I,=fddF,
we have Ix + Iy =/(w' + y’)dE
Similarly, Iy Iy = (0" +w)dF.

But since the # and y of any dF have the same hypothennse as
the  and v, we have v'+ v =o'+ o .. i+ Iy = Ip+1nn

Fia. 100 Fia. 100a.

Let X be an axis of symmetry; then, given Iy and Iy (O is
anywhere on X), required Zy, U being an awxis through O and
making any angle a with X.

*Ly=/fv"dF = [y cos &« —  sin a)'dF; ie.,

Iy = cos’ afy’dF — 2 sin a cos afzyd F+ sin® afz*d F.
Baut since the area is symmetrical about X, in summing up the
products ayd F, for every term 2( -+ y)dZ, there is also a term
#( — y)dF to cancel it ; which gives /zyd 7 = 0. Hence

Iy = cos® aly 4 sin® aly,.

The student may easily prove that if two distances @ and &
be set off from @ on X and Y respectively, made inversely
proportional to ¥7z and ¥/ 7Ty, and an ellipse described on @ and
b as semi-axes ; then the moments of inertia of the figure about
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any axes throngh O are inversely proportional to the squares
of the corresponding semi-diaineters of this ellipse; called
therefore the Zllipse of Inertia. It follows therefore that the
moments of inertia about all gravity-axes of a circle, or a
regular polygon, are equal ; since their ellipse of inertia must
be a circle. Even if the plane figure is not symmetrical, an
“ellipse of inertia” can be located at any point, and has the
properties already mentioned ; its axes are called the principal
awes for that point.

90. The Rectangle. —/F%rst, about its base. Fig. 101. Since

all points of a strip parallel to the base

—b— D= have the same co-ordinate, z, we may take
dz the area of such a strip for dF" = bdz;

: ’ :'jhg.'.lazfz’dF=b[z’dz
i

Fia. 101 Fia. 102. — *}b 2 = i‘b’b’.
Secondly, about a grawity-axis parallel to base.
h
dF = bdz .. I,= f2dF = b‘/_'nzdz= AR

Thirdly, about any other axis in its plane. Use the results
already obtained in connection with the reduction-formule of

§§88, 89.
90a. The Triangle.—ZF%rst, about an axis through the vertex

and parallel to the base; ie, Iy b— p
in Fig. 103. Here the length . 4 &n
of the strip is variable; eall ity. 5 \J 2 :
imilar triangl { th
From similar triangles | y }iJ
y =0+ hz; Fia. 108, Fio. 104

o & =fz’dF= /z’ydz =0+ h)fz'dz = A
Secondly, about g, @ gravity-axis parallel to the base. Fig.
104. From § 88, eq. (1), we have, since ' = }bk and
d =3k I, = Iy — F& = 34" — Jbh . $4' = Hbh".
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Thirdly, Fig. 104, about the base ; Iy =1 From § 88, eq.
4), Ip = I, 4 Fd', with d = $A ; hence
Ip = gbh* + 3k . J1° = 2R
91. The Circle.—About any diameter, as g, Fig. 105. Polar

co-ordinates, /, = /z'dF. Here we take d/ = area of an ele-
mentary rectangle = pdg.dp, while z = psin @.

@
o

Fia. 105, © Fee
I, = f f (0 sin @Y pdopdp = ‘/‘h [sin’ pde f " 'dp:l
—fhsm pdp = 4f§(1 — cos 2¢)d@
=7 /:h [-12-d¢ 1 . cos 2<pd(2¢)]

92. Compound Plane Fxgures.—Smée I=/f2"dF is an in-
finite series, it may be considered as made up of separate
groups or subordinate series, combined by algebraic addition,
corresponding to the subdivision of the compound figure into
component figures, each subordinate series being the moment of
inertia of one of these component figures; but these separate
moments must all be referred to the same awxis. It is con-
venient to remember that the (rectangular) I of a plane
figure remains unchanged -if we conceive some or all of its
elements shifted any distance parallel to the axis of refer-
ence. E.g.,in Fig. 106, the sum of the Jj of the rectangle CZ;
and that of FD is = to the J of the imaginary rectangle
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formed by shifting one of them parallel to B, until it touches
the other; i.e., /5 of CE+ Iy of FID = b4 (§90). Hence
the I of the T shape in Fig. 106 will be = /5 of rectangle
AD — Iy of rect. CE — I of rect. FD.

That is, ITgof T =4[A' —0A"] ... (§9). . . (1)
About the gravity-awis, g, Fig. 106. To find the distance d
from the base to the centre of gravity, we may make use of
eq. (8) of §23, writing areas instead of volumes, or, experi-
mentally, having cut the given shape out of sheet-metal or
card-board, we may balance it on a knife-edge. Supposing d
to be known by some such method, we have, from eq. (4) of
§ 88, since the area "= bk — bA,, [, = I — F&';
ie, Iy = 3[oA'—0A"1— Ph—0lr)d. . . (2
The double—T (or ::), and the dow forms of Fig. 106e, if
cymmetmcal about the gravity-

l __l axis ¢, have moments of inertia
h{ [¥b b~1M| alike in form. Here the grav-

h I ity-axis (parallel to base) of the
| I compound figure is also a grav-
F1o. 106a. ity-axis (parallel to base) of each

of the two component rectangles, of dimensions 4 and 4, , and
h,, respectively.
Hence by algebraic addition we have (§ 90), for either com-
pound figure,
I=30 =04 . . . . . . (3
(If there is no axis of symmetry parallel to the base we must
proceed as in dealing with the T-form.) Similarly for the ring,

A,
W o NBlg
Vi

Fio. 107. Fio. 108,
Fig. 107, or space between two concentric circumferences, we
have, about any diameter or ¢ (§ 91),

I,=3x(r)—2". . . . . . . (¥
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The rhombus about a gravity-axis, g, perpendicular to a
diagonal, Fig. 108.—This axis divides the figure into two
cqual triangles, symmetrically placed, hence the I, of the
rhombus equals double the moment of inertia of one triangle
about its base ; hence (§ 90a)

I,=2. {bFA) =04 . . . . . (5)

(The result is the same, if either vertex, or both, be shifted
any distance parallel to 4.B.)

For practice, the student may derive results for the trapezoid ;
for the forms in Fig. 106, when the inner corners are rounded
into equal quadrants of circles; for the double-T, when the
lower flanges are shorter than the upper; for the regular
polygons, etc.

93. If the plane figure be bounded, wholly or partially, by
curves, it may be subdivided into an infinite number of strips,
and the moments of inertia of these (referred to the desired
axis) added by integration, ¢f the equations of the curves are
known ; if not, Simpson’s Rule, for a finite even number of
strips, of equal width, may be employed for an approximate
result. If these strips are parallel to the axis, the 7 of any one
strip = its length X its width X square of distance from axis;
while if perpendicular to, and terminating in, the axis, its
I = } its width X cube of its length (see § 90).

A graphic method of determining the moment of inertia of
any irregular figure will be given in a subsequent chapter.

94. Polar Moment of Inertia of Plane Figures (§85).—Since
the axis is now perpendicular to the plane of the figure, inter-
seeting it in a point, O, the distances of the ele-
ments of area will all radiate from this point,
and would better be denoted by p instead of z;
hence, Fig. 109, /p'dF is the polar moment of
inertia of any plane figure about a specified
point Oj; this may be denoted by Z,. Butp'  Fre. 100.
=& + 4, for each dF’; hence

L =f(e"+ y"\iF = fddF + fy'dF = I+ I.
7
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i.e., the polar moment of inertia about any given point in
the plame equals the sum of the rectangular moments of iner-
tia about amy two awes of the plane figure, which intersect at
right angles in the given point. We have therefore for the
circle about its centre

I, =1mr' 4 durt = g
For a ring of radii », and 7,

I, =3n(r'! —1Y);
For the rectangle about its centre,

I, = PyU 4 25 = A BA0 + )3
For the square, this reduces to

L=
(See §§90 and 91.)

95. Slender, Prismatic, Homogeneous Rod. —Returning to the
momwment of inertia of rigid bodies, or solids, we begin with that
of a material line, as it might be called, about
an axis through its extremity making some an-
gle a with the rod. Let = length of the rod,
Fits cross-section (very small, the result being
. strictly true only when # = 0). Subdivide
Fre. 110, the rod into an infinite number of small prisms,
each having # as a base, and an altitude =ds. Let y = the
heaviness of the material ; then the mass of an elementary
prism, or dM. = (y = g)Fds, while its distance from the axis
Zis p=s8sin a. Hence the moment of inertia of the rod
with respect to Z as an axis is

I,:fp’dM: (y = ¢)Fsin’ a[s’da = #y +9)FTsina.

But ¥/l + g = mass of rod and ! sin @ = a, the distance of
the further extremity from the axis; hence /; = 3 Ma* and
the radius of gyration, or k, is found by writing 3 Ma'= M ¥*;
K =13aork = V}a(cee §86). If a=90° a=1.

96. Thin Plates. Axis in the Plate.—Let the plates be homo-
geneous and of small constant thickness = 7. If the surface of
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the plate be = F; and its heaviness y, then its mass = y Fr +¢.

From § 87 we have for the plate, about any axis,

I = (y + g)r X mom. of inertia of the plane figure formed by

the shape of the plate. . . e (@
Rectangular plate. Gramt/y axis parauel to baae —Dimen-

sions b and A.” From eq. (1) and § 90 we have

I=(y + 9)r . &§OF* = (yht + g\ i’ = {e MAY; . ' = fgh".
Similarly, if the base is the awis, Iz = 3 MK, .-. k' = A"
Triangular plate. Awis through vertex parallel to base.—

From eq. (1) and § 90a, dimeneions being b and 2,

Iy = (y + )ik’ = (yibhr + 9)41* = $ MR . I = §A°
Circular plate, with any diameter as axis—From eq. (1)
and § 91 we have
I, ={y + g)rinr = (ynr'r + g\ = I M7 . k=1

97. Plates or Right Prisms of any Thickness (or Altitude).
Axis Perpendicular to Surface (or Base).—As before, the solid is
homogeneous, i.e., of constant heaviness y;
let the altitude = A. Consider an elementary
prism, Fig. 111, whose length is parallel to the
axis of reference Z. Its altitude = A = that 'I
of the whole solid ; its base = d/" = an element !
of F the area of the base of solid ; and each *
point of it has the same p. Hence we may  Fra. 11
take its mass, = yAdF + g, as the d M in summing the series

1= /0dM;
< Iy = (yh +g)fp'dF
= (yh =+ g) X polar mom. of inertia of base. . . (2)

By the use of eq. (2) and the results in § 94 we obtain the
following :

Circular plats, or right circular cylinder, about the geo-
metrical axis. 7 = radius, A = altitude.

= (yh+ gHhmr* = (yhnr* = i = 4% - B = .

Right parallelopiped or rectangular plate.—Fig. 112,

I, = (vh = gyi508,(3," + 8") = Mpd’; . B = /™.




1v0 MECHANICS OF ENGINEERING.

For a hollow cylinder, about its geometric axis,
L= (yh+gin(r — r) = § (' +77); < K = ' +1)

)’k ; " z é

Fro. 112 Fie. 113,
98. Circular Wire.—Fig. 113 (perspective). Let Z be a
. gravity-axis perpendicular to the plane of the wire; X and ¥
lie in this plane, intersecting at right angles in the centre O.
The wire is homogeneous and of constant (small) cross-section.
Since, referred to Z, each dM has the same p =7, we have
Iz =/r"dM = Mr*. Now Iy must equal Jy, and (§ 94) their
sum = Jg,

s dyyor Iy =3M», and kY, orky =4

99. Homogeneous Solid Cylinder, about a diameter of its base.
—Fig.114. Iy =1 Divide the cylinder into an infinite num-
ber of laminge, or thin plates, parallel to the
base. Each is some distance z from X, of
thickness dz, and of radius » (constant). In
each draw a gravity-axis (of its own) parallel to

Fre. 114. X. We may now obtain the Jy of the whole
cylinder by adding the Z¢’s of all the lamins. The I, of any
one lamina (§ 96, circular plate) = its mass X $»*; hence its
Iy (eq. (8), §88) = its I, 4 (its mass) X 2z*. Hence for the
whole cylinder .

i
1
H

T Y

L= [ pienr + 3+ 2]

= (mr'y + g)[ifr' ‘/.‘h dz 4 ‘/f z’dz]§

e, Ir = (2r'hy + g)(3r* -+ 4) = Md* + 147,

100. Let the student prove (1) that if Fig. 114 represent
any right prism, and %, denote the radius of gyration of any
one lamina, referred to its gravity-axis parallel to X, then the
Iy of whole prism = M(k;' + 4A%); and (2) that the moment
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of inertia of the cylinder abont a gravity-axis parallel to the
base is = M(3r* + A7).

101. Homogeneous Right Cone.—Fig.115. First, about an
axis V, through the vertex and parallel to the base. As before,
divide into laming parallel to the base. Each isa
circular thin plate, but its radius, , is not = », but,
from proportion, is @ = (r + A)z. : 5

The J of any lamina referred to its own gravity- ? ;
axis parallel to Vis (§ 96) = (its mass) X 12?, and T
its v (eq. (3), §88) is .. = its mass X &' 4+ Fio 15
its mass X 2.

Hence for the whole cone,

L= (wedsy + g)lie" + 57

""’[ +11/’“ 2ds = MO+ 44

Secondly, about a gravity-axis parallel to the base.—From
eq. (3), §88, with d = 44 (see Prob. 7, §26), and the result
just obtained, we have 7= MA [+ 3A").

Thirdly, about its geometric axis, Z—Fig. 116. Since the
axis is perpendicular to each circular lamina through the centre,
its Iz (§97) is

= its mass X #(rad.)’ = (y#mz'dz + g)io"

Now 2 = (» + %)z, and hence for the whole cone

L=i(ymr - gh") | e = Gy + g)fyr* = M

Fia. 116, Fra. 117.

102. Homogeneous Right Pyramid of Rectangular Base.—
About its geometrical axis., Proceeding as in the last para-
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graph, we derive J; = M;d, in which d is the diagonal of the
base.

103. Homogeneous Sphere. —About any diameter. Fig. 118.
I; =1 Divide into laminge perpendicular to Z. By § 97, and
noting that o' = »*— 2', we have finally, for the whole sphere,

+r
Ip=(y= + 29)[_ r(?"z — 2+ 32 = Fyart =g
= ($7r'y + g\r' = Mpr; -~ k) = §"

For a segment, of one or two bases, put proper limits for z
in the foregoing, instead of 4 » and — 7.

104. Other Cases.—Parabolic plate, Fig. 119, homogeneous
and of (any) constant thickness, about

\4
an axis through O, the middle of the
—g_a chord, and perpendicular to the plate.
This is
Fio. 119, Fio. 120. I =MK3s' + §4°).

The area of the segment is = $As.

For an elliptic plate, Fig. 120, homogeneous and of any
constant thickness, semi-axes @ and b, we have about an axis
through O, normal to surface J, = M}[a'+ 5"]; while for a
very small constant thickness

Iy = M3V, and I,= Mia"

The area of the ellipse = 7ab.

Considering Figs. 119 and 120 as plane figures, let the
student determine their polar and rectangular moments of
inertia about various axes.

(For still other cases, see p. 518 of Rankine’s Applied
Mechanics, and pp. 593 and 594 of Coxe’s Weisbach.)

106. Numerical Substitution.—The moments of inertia of
plane figures involve dimensions of length alone, and will be
utilized in the problems involving flexure and torsion of beams,
where the inch is the most convenient linear unit. E.g., the
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polar moment of inertia of a circle of two inches radius about
its centre is mr* = 25.13 +- diguadratio, or four-dimension,
inches, as it may be called. Since this quantity contains four
dimensions of length, the use of the foot instead of the inch
would diminish its numerical value in the ratio of the fourth
power of twelve to unity.

The moment of inertia of a rigid body, or solid, however,
=M¥E = (G -+ g)&, in which @, the weight, is expressed in
units of force, g involves both time and space (length), while £*
involves length (two dimensions). Hence in any homogeneous
formula in which the 7 of a solid occurs, we must be careful to
employ units consistently ; e.g., if in substituting @ < ¢ for M’
(as will always be done numerically) we put ¢ = 32.2, we
should use the second as unit of time, and the foot as linear
unit.

106. Example.—Required the moment of inertia, about the -
axis of rotation, of a pulley consisting of a rim, four parallelo-
pipedical arms, and a cylindrical hub which may be considered
solid, being filled by a portion of the shaft.
Fig. 121. Call the weight of the hub &,
its radius # ; similarly, for the rim, @,, r,
and 7, ; the weight of onearm being = @,.
The total 7 will be the sum of the J’s of
the component parts, referred to the same
axts, viz.: Those of the hub and rim will
be (G = g¥r" and (@, = g}(r+7,)),
respectively (§ 97), while if the arms are Flo. 121,
not very thick compared with their length, we have for them
(8895 and 88)

4(Gr+ [0 — " —30n — 7' + [+ 30— )T
as an approximation (obtained by reduction from the axis at
the extremity of an arm to a parallel gravity-axis, then to the
required axis, then multiplying by four). In most fly-wheels,
the rim is proportionally so heavy, besides being the farthest
removed from the axis of rotation, that the moment of inertia
of the other parts may be for practical purposes neglected.
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107. Ellipsoid of Inertia.—The moments of inertia about
all axes passing through any given point of any rigid body
whatever may be proved to be inversely proportional to the
squares of the diameters which they intercept in an imaginary
ellipsoid, whose centre is.the given point, and whose position
in the body depends on the distribution of its mass and the
location of the given point. The three axes which contain the
three principal diameters of the ellipsoid are called the Princs-
pal Awes of the body for the given point. This is called the
ellipsoid of inertia. (Compare §89.) Hence the moments of
inertia of any homogeneous regular polyedron about all gravity-
axes are equal, since then the ellipsoid becomes a sphere. It
can also be proved that for any rigid body, if the co-ordinate
axes X, ¥,and Z, are taken coincident with the three principal
axes at any point, we shall have '

foydM =0; fyzdM =0; and fzadM =0.
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CHAPTER V.

DYNAMICS OF A RIGID BODY.

108. General Method. —Among the possible motions of a
rigid body the most important for practical purposes (and for-
tunately the most simple to treat) are : a motion of translation,
in which the particles move in parallel right lines with equal
accelerationg and velocities at any given instant; and rotation
about a fixed axis, in which the particles describe circles in
parallel planes with velocities and accelerations proportional
(at any given instant) to their distances from the axis. Other
motions will be mentioned later. To determine relations, or
equations, between the elements of the motion, the mass and
form of the body, and the forces acting (which do not neces-
sarily form an unbalanced system), the most direct method to
be employed is that of two equivalent systems of forces (§ 15),
one consisting of the actual forces acting on the body, con-
sidered free, the other imaginary, consisting of the infinite
number of forces which, applied to the separate material points
composing the body, would account for their individual mo-
tions, as if they were an assemblage of particles withont mutnal
actions or coherence. If the body were at rest, then considered
JSree, and the forces referred to three co-ordinate axes, they
would constitute a balanced system, for which the six summa-
tions 2X, 3 Y, 2Z, Z(mom.)y. Z(mom.)y, and Z(mom.),.
would each = 0; but in most cases of motion some or all of
these snms are equal (at any given instant), not to zero, but to
the corresponding sumunation of the imaginary equivalent
system, i.e., to expressions involving the masses of the particles
(or material points), their distribution in the body, and the
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elements of the motion. That is, we obtain six equations by
putting the ZX of the actual system equal to the X of the
imaginary, and so on ; for a definite instant of time (since some
of the quantities may be variable).

109. Translation.—Fig. 122. At a given instant all the par-
ticles have the same velocity = v, in parallel right lines (par-
allel to the axis X, say), and the
same acceleration p. Required
Mp the 2ZX of the acting forces,
aMp §how'n at (I.).. (IL.) shows the
imaginary equivalent system, con-
sisting of a force = mass X acc.
= dMp applied parallel to X to
each particle, since duch a force
would be necessary (from eq. (IV.)
§ 55) to account for the accelerated rectilinear motion of the
particle, independently of the others. Putting (ZX );=(ZX)p,
we have

(EX)=fpdM =pfdM =Mp. . . . (V.

It is evident that the resultant of system (II.) must be paral-
lel to X'; hence that of (I.), which = (X );and may be de-
noted by £, must also be parallel to X'; let @ = perpendicular
distance from & to the plane Y'X; a' will be parallel to Z.
Now put [Z(mom.)y]; = [Z(mom.y)]s, (¥ is an axis perpen-
dicular to paper through O) and we have — Ra = — fd Mpz
= —pfdMz = — pMz (§88), ie., a =2 A similar result
may be proved as regards y. Hence, if a rigid body has a
motion of translation, the resultant force must act in a line
through the centre of gravity (here more properly called the
centre of mass), and parallel to the direction of motion. Or,
practically, in dealing with a rigid body having a motion of
translation, we may consider it concentrated at its centre of
mass. If the velocity of translation is uniform, R = M X 0
=0, i.e., the forces are balanced.
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110. Rotation about a Fixed Axis.—First, as to the elcments
of space and time involved. Fig. 123.  Let O be the axis of
rotation (perpendicular to paper), OY a fixed g w,
line of reference, and OA a couvenient line of \
the rotating body, passing through the axis and ‘ﬂ
perpendicular to it, accompanying the body in
its angular motion, which is the same as that of
OA. Just as in linear motion we dealt with  Fo 1%
linear space (g), linear velocity (v), and linear acceleration (p),
so here we distinguish at any instant;

a, the angular space between O Y and OA ;

®= Z;" » the angular velocity, or rate at which a is changing ;

and

do da ) ) .
6 = T = am the angular acceleration, or rate at which
is changing.

These are all reckoned in z-measure and may be 4 or —,
according to their direction against or with the hands of a
watch.

(Let the student interpret the following cases: (1) at a cer-
tain instant w is 4, and 6 —; (2) @ is —, and 6 +; (3) a is
—, @ and 6 both +; (4) a4, @ and 6 both —.) For rotary
motion we have therefore, in general,

w=—d_t; S (VI) 0=w=w;. . (VII)
"and o wdw=6da; . . . . .(VIIL)

corresponding to egs. (I.), (IL.), and (IIL.) in §50, for rectilinear
motion.

Hence, for uniform rotary motion, @ being constant and
6 = 0, we have @ = wt, ¢ being reckoned from the instant
when a = 0.

For uniformly accelerated rotary motion 6 is constant, and
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if o, denote the tnitial angular velocity (when a and ¢ = ©),

we may derive, precisely as in § 56,

w=w,+6t; . . (1 a=wt4$60; . . (2)
@ — @,

a=—ag; . . () and a = Yo, +o) . . (4)

If in any problem in rotary motion 6, @, and « have been
determined for any instant, the corresponding linear values for
any point of the body whose radial distance from the axis is p,
will be 8= ap (= distance described by the point measured
along its circular path from its initial position), » = wp = its
velocity, and p, = 6Op its tangential acceleration, at the instant
in question. '

Examples.—(1) What value of @, the angular velocity, is
implied in the statement that a pulley is revolving at the rate
of 100 revolutions per minute §

100 revolutions per minute is at the rate of 27 X 100
= 628.32 (7-measure units) of angular space per minate
= 10.472 per second; .. @ = 628.32 per minute or 10.472
per second.

(2) A grindstone whose initial speed of rotation is 90 revo-
lutions per minute is brought to rest in 30 seconds, the an.
gular retardation (or negative angular acceleration) being con-
stant; required the angular acceleration, 6, and the angular
space « described. Use the second as unit of time.
®, = 27§} = 9.4248 per second ; .. from eq. (1)

6 = Z—* = —9.494 + 30 = — 0.3141 (z-measure units)
per “square second.” The angular space, from eq. (2) is
a = wt+ 368 =30 X 9.42 — $(0.314)900 = 141.3
(7-measure nnits), i.e., the stone has made 22.4 revolutions in
coming to rest and a point 2 ft. from the axis has described a
distance ¢ = ap = 141.3 X 2 = 282.6 ft. in its circular path.

111, Rotation. Preliminary Problem. Axis Fixed. —For
clearness in subsequent atter we now consider the following
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simple case. Fig. 124 shows a rigid body, consisting of a
drum, an axle, a projecting arm, all -
of which are <mponderable, and a
single material point, whose weight
is ¢ and mass M. An imponderable
flexible cord, in which the tension is
kept coustant and = P, unwinds
from the drum. The axle coincides
with the vertical axis Z, while the cord Fro. 124,
is always parallel to Y. Initially (i.e., when ¢ = 0) M lies at
rest in the plane ZY. Required its position at the end of any
time 7 (i.e., at any instant) and also the reactions of the bearings
at O and O,, supposing no vertical pressure to exist at O,, and
that 2 and M are at the same level. No friction. . At any in-
stant the eight unknowns, @, @, 6, X, ¥, Z,, X,, and Y, may
be found from the six equatious formed by putting =X, ete,,
of the system of forces in Fig. 124, equal, respectively, to ‘the
2 X, etc., of the imaginary equivalent system in Fig. 125, and
two others to be mentioned subsequently. Since, at this in-
stant, the velocity of M must be v = wp and its tangential ac-
celeration p, = 0Op, its circular motion
P could be produced, considering it free (eq.
P T (5), §74), by a tangential force 7 = mass
i iy Xp.= M6Op, and a normal centripetal
force N=Mv' =+ p=M(wp)' <+ p=w’'Mp.
oo, 1. Hence the system in Fig. 125 is equivalent
to that of Fig. 124, and from putting the = (mom.)z of one
= that of the other, we derive
Pa=Tp;ie.Pa=6Mp",, . . . . (1)
whence 6 becomes known, and is evidently constant, since P,
@, M, and p are such. .- the angular motion is uniformly ac-
celerated, and from egs. (1) and (2), § 110, @ and a become
known;
jle,w=06t, . . . (2) and a=46¢". . . . . (8)
Putting (22 of 124) = (3 Z of 125). gives
Z2Z.—-G=0ie.2,=6¢ . . . . (4
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Proceeding similarly with the ZX of each system,
X, 4+ X, = Tcosa — Nsin a = 6 Mp cos a — &’ Mpsin a, (5)
and with the 3 Y of each,
P4 Y, 4+ Y =—Tsina—Ncosa=— O Mpsina

— @' Mpcos a; (6)

while with the = (mom.)y we have, conceiving all the forces in
each system projected on the plane ZY (see §88), and noting
that y = p cos @ and # = p sin a,
+ Gpeos a+ Yl + Pb = — (6 Mpsin a)b—(a' Mp cosa)b,(T)
and with the = (mom.)y,
— Gpsina— Xl= — (6. Mpcos a)p + (o' Mpsina)h. . (8)

From (7) we may find ¥ ; from (8), X;; then X, and ¥,
from (5) and (6). It will be noted that as the motion proceeds
6 remains constant; w increases with the time, @ with the
square of the time; Z, is constant, = G ; while X,, T, X,
and Y| have variable values dependent on p cos @ and p sin a,
i.e., on the co-ordinates ¥ and « of the moving material point.

112. Particular Supposition in the Preceding Problem with
Numerical Substitution.—Suppose we have given (using the
Joot-pound-second system of units in which ¢ = 32.2) ¢ = 64.4
Ibs., whence

M=(G+g9)=2; P=41bs,l=41t,b=21t., a = 2ft,
and p = 4 ft.; and that M is just passing throngh the plane
ZX,ie., that « = §x. We obtain, first, the angular accelera-
tion, eq. (1),

60=Pao+ Mp'=8+32=025 =1
From egs. (2) and (3) we have at the instant mentioned (not-
ing that when @ was = 0, ¢ was = 0)
o' = 2a6 = j7 = 0.7854 -+,
while (2) gives, for the time of describing the quadrant,
t=w + 6 =3.544....seconds.
Since at this instant cos @« = 0 and sin @ = 1, we have, from

(D
404+ Y, X4+4X2= —}X2X4X2; .. ¥,= — 81bs.
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The minus sign shows it should point in a direction contrary
to that in which it is drawn in Fig. 124. Eq. (8) gives
—644 x4—X, X 4=—0+1r%x2Xx4X2;... X; = — 67.54 lbs.
And similarly, knowing ¥, and X,, we have from (5) and (6),
Xo=+461.261bs,, and Y, = — 3.00 lbs.

The resultant of X, and Y, also that of X, ¥, and Z, can
now be found by the parallelogram (and parallelopipedon) of
forces, both in amount and position, noting carefully the direc.
tions of the components. These resultants are the actions of
the supports upon the ends of the axle; their equals and
opposites would be the actions or pressures of the axle against
the supports, at the instant considered (when M is passing
throngh the plane ZX; i.e., with @« = 47). (At the same in-
stant, suppose the string to break; what would be the effecton
the eight quantities mentioned ?)

113. Centre of Percussion of a Rod suspended from one End. —
Fig. 126. The rod is initially at rest (see (I.) in figure), is straight,
homogeneous, and of constant
(small) cross-section. Neglect its
weight. A horizontal force or
pressure, P, due to a blow (and
varying in amount during the
blow), now acts upon it from the
left, perpendicularly to the axis,

Z, of lt:::spem;ion. An accelerated @ F,(f '1),5_ ()
rotary motion begins about the fixed axis Z. (II.) shows the rod
Jree, at a certain instant, with the reactions X, and ¥, put in
at O,. (IIL) shows an imaginary system which would produce
the same effect at this instant, and consisting of a d7" = d M6 0.
and a dN = w'd Mpapplied to each d X, the rod being composed
of an infinite number of dM’s, each at some distance p from
the axis. Considering that ke rotation has just begun, @, the
angular velocity is as yet small, and will be neglected. Re-
quired ¥, the horizontal reaction of the support at O in terms
of P. By putting 2 Y;; = = ¥, we have

P—Y,=/dT=6/od M = OM>.
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. ¥o=P — 0Mp; pis the distance of the centre of gravity
from the axis (N.B. sfodM = Mp is only true when all the
p’s are parallel to each other). But the value of the angular
acceleration 6 at this instant depends on P and a, for = (mom.),
in (IL) = 2 (mom.); in (IIL.), whence Pa = 6fp'd M = 61,
where [/, is the moment of inertia of the rod about Z, and from
§95 =$M>. Now p = §Z; hence, finally,

r.=p[1-3.%]

If now Y, is to = Q, i.e., if there is to be no shock between
the rod and axis, we need only apply P at a point whose dis-
tance @ = §/ from the axis; for then ¥, = 0. This point is
called the centre of percussion for the given rod and axis. It
and the point of suspension O are interchangeable (see § 118).
(Lay a pencil on a table; tap it at a point distant one third of
the length from one end ; 1t will begén to rotate about a vertieal
axis through the farther end. Tap it at one end ; it will begin
to rotate about a vertical axis through the point first mentioned.
Such an axis of rotation is called an axis of instantaneous rota-
tion, and is different for each point of impact—just as the
point of contact of a wheel and rail is the one point of the
wheel which is momentarily at rest,and about which, therefore,
all the others are turning for the instant. Tap the pencil at
its centre of gravity, and a motion of translation begins; see
§ 109.)

114, BRotation. Axis Fixed. General Formulm.—Consider

Fia. 127.

Ing now a rigid body of any shape whatevel ]et Fig. 127 indi.
cate the system of forces acting at any given instant, Z being
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the fixed axis of rotation, @ and 6 the angular velocity and
angular acceleration, at the given instant. X and Y are two
axes, at right angles to each other and to Z, fixed in space. At
this instant each dM of the body has a definite , y, and ¢
(see Fig. 128), which will change, and also a p, and 2, which will
not change, as the motion progresses, and is pursuing a circu-
lar path with a velocity = wp and a tangential acceleration
= 6p. Hence, if to each dM of the body (see Fig. 128) we
imagine a tangential force d7'=dM6p and a normal force
= dM(wp) + p= 'dMp to be applied (eq. (5), §74), and
these alone, we have a system comprising an infinite number of
forces, all parallel to XY, and equivalent to the actual system
in Fig. 127. Let 2 X, etc., represent the sums (six) for Fig.
127, whatever they may be in any particular case, while for
128 we shall write the corresponding sums in detail. Noting
that
JAN cos ¢ = a’fdMp cos ¢ = w'fdMy = ' My,(388);
that /dN sin ¢ = wfdMp sin ¢ = &'fd Mz = o' Mz;
and similarly, that /27 cos @ = 6/dMp cos @ = 6 My, and
JAT sin @ = 6 Mz ; while in the moment sums (the moment
of dT cos @ about Y, for example, being — d7 cos ¢ .2 =
— 6dMp (cos p)z=—60d Myz, the sum of themoms.y of all the
(@T cos p)'s = — 8fd Myz)
JAT cos pz = 6fdMyz, /AN sin gz = &)fd Mzz, ete.,
we have, since the systems are equivalent,
SX=+4+6My—'Mz;. . . . (IX)
SY=—6Mo—'My; . . . . (X)
3Z= 0; . . . . . ... (XI)
2 moms.y = — O/dMzz — wifdMyz; . (XIL)
2 moms.y = — 6fdMyz+ &lfdMxz; . (XIIL.)
2 moms.; = GfdMp'.=6I, . - . (XIV)
These hold good for any instant. As the motion proceeds z
and y change, as also the sums fdMwzz and fdMyz. If the
body, however, is homogeneous, and symmetrical about the
dlane XY, fdMxz and fdMyz would always = zero ; since
9
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the 2z of any d M doesnot change, and for every term dMy(--2),
there would be a term dMy(— z) to cancel it; similarly for
JdMzz. The eq. (XIV.), = (moms. about axis of rotat.) =
JSATp = 6fAMp* = (angular accel.) X (mom. of inertia of
body about axis of rotat.), shows how the sum fdMp* arises in
problems of this chapter. That a force d7° = dM6p should
be necessary to account for the acceleration (tangential) 6p of
the mass dM, is due to the so-called ¢nertia of the mass (§ 54),
and its moment d7'p, or 6d Mp’, might, with some reason, be
called the moment of inertia of the d M, and f6d Mp'= 6f/d M p*
that of the whole body. But custom has restricted the name
to the sum fd M p', which, being without the 6, has no term to
suggest the idea of inertia. For want of a better the name is
still retained, however, and is generally denoted by Z. (See
§§ 86, etc.)

115. Example of the Preceding.—A homogeneous right par-
allelopiped is mouuted on a vertical
axle (no friction), as in figure. O is
at its centre of gravity, Imzce both

x\?\ @ and y are zero. Let its heaviness

be y, its dimensions A. b, and b (see

§97). XX isa plane of symmetry,

hence both [dMzz and fdMyz are

zero at all times (see above). The
P, tension P in the (inextensible) cord

Fio. 120. is caused by the hanging weight P,

(but is not = P,, unless the rotation is uniform). The figure
shows both rigid bodies fiee. P, will have a motion of trans-
lation ; the parallelopiped, one of rotation about a fixed axis.

- No masses are considered except P, + ¢g. and bhb,y = ¢g. The

Iz = Mks of the latter = its mass X (5, +0%), § 97. At
any instant, the cord being taut, if p = linear acceleration of
P, we have

p=6a. . . . . . . eq.(a)
From (XIV.)), Pa=61l;; ~.P=6L+a . . . (1
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For the free mass P, = g we have (§109) P, — P =
mass X acc.,
=P, +g9p=(PLP, +9ba; ..P=P(1—06a=+g) (9
Equate these two values of £ and solve for 6, whence
Pa
9 = _M—k;+ (P_ ‘_':' 'g)ar e o o o o (3)
All the terms here are constant, Lience 0 is constant ; there-
fore the rotary motion is uniformly accelerated, as also the
translation of P,. The formule of § 56, and (1), (2), (3), and
(4) of §110, are applicable. The tension P is also constant;
sce eq. (1). As for the five unknown reactions (components)
at O, and O,, the bearings, we shall find that they too are con-
stant ; for

from (IX.) we have X+X,=0;4
from  (X.) we have P+Y, 4+ XY, =0; (5)
from (XI.) we have Z,— @=0; (6)
from (XIL) we have P. 40+ Y,.0,0-7,.0,0=0; (7)
from (XIIL.) we have —X,.004+X,.0,0=0. (8)

Numerical substitution in the above problem.—Let the par.
allelopiped be of wrought-iron ; let P, = 481bs.; a =6 in. =
3 fu; b =38in. = }ft. (see Fig. 112); b, = 2 ft. 3in. = § ft.;
and A = 4in. = } ft. Also set 0,0 = 0,0 =18 in. = § ft.,
and 40 = 38 in. = } ft. Selecting the foot-pound-second
system of units, in which ¢ = 32.2, the linear dimensions must
be nsed in feet, the heaviness, y, of the iron must be used in
Bs. per cubic foot, i.e., y = 480 (see §7), and all forces in lbs.,
times in seconds.

The weight of the iron will be @ = Vy =bbhy=%.2.%

X 480 = 90 lbs.; its mass = 90 < 32.2 = 2.79; and its mo-
ment of inertia about Z = I, = Mk, = M55, + ") =2.79
X 0.426 = 1.191. (That is, the radius of gyration, k,, =
#0.426 = 0.653 ft.; or the moment of inertia, or any result
depending solely upon it, is just the same as if the mass were
concentrated in a thin shell, or a line, or a point, at a distance
of 0.653 feet from the axis.) We can now compute the an.
gular acceleration, 6, from eq. (3);
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48 X } _ 24
1.191 4 (48 + 82.2) X } ~ 1.191 4 0.372
‘m-measure units per “ square second.” The linear acceleration
of P, is p = Oa = 7.68 feet per square second for the uniform.
ly accelerated translation.

Nothing has yet been said of the velocities and initial condi-
tions of the motions ; for what we have derived so far applies
to any point of time. Suppose, then, that the angular velocity
@ = zero when the time, 2= 0; and correspondingly the ve-
locity, ¥ = wa, of translation of P,, be also = 0 when ¢ =0.
At the end of any time ¢, @ = 6¢ (§§ 56 and 110) and v = p¢
= Oat; also the angnlar space, a = 467", described by the par-
allelopiped during the time ¢, and the linear space ¢ = §p¢*
= §6af’, through which the weight P, has sunk vertically.
For example, during the first second the parallelopiped has ro-
tated through an angle @ = $6¢ = § X 15.36 X1 = 7.68 units,
m-measure, i.e., (7.68 < 27) = 1.22 revolutions, while P, has
sunk through s = $6af’ = 8.84 ft., vertically.

The tension in the cord, from (2), is

P = 48(1 —15.36 X § <+ g) = 48(1 — 0.24) = 36.48 lbe.

The pressures at the bearings will be as follows, at any in-
stant : from (4) and (8), X, and X, must individually be zero;
from (6) Z, = G@ = Vy = 901bs.; while from (5) and (7), X,
= — 21.28 lbs,, and ¥, = — 15.20 lbs., and should point in a
direction opposite to that in which they were assumed in Fig.
129 (see last lines of § 39).

116. Torsion Balance. A Variably Accel. Rotary Motion.
Axis Fixed.—A homogeneous solid having an axis of symmetry
is suspended by an elastic prism,
or filament (whose mass may be
neglected), so that the latter is
vertical and coincident with the
axis of symmetry, and is not only
supported, but prevented from
turning at its upper extremity.
If the solid is turned about its
axis away from its position of rest and set free, the torsional

6 = = 15.86
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elasticity of the rod or filament, which is fixed in the solid,
causes an oscillatory rotary motion. Required the duration of
an oscillation. Fig. 130.

Take the axis ¥ at the middle of the oscillation (the original
position of rest). Reckon the time from the instant of passing
this position. Let the initial angular velocity = @,. As the
motion progresses @ diminishes, i.e., 0 is negative.

To consider the body free, conceive the rod cut close to the
body (in which it is firmly inserted), and in the section thus
exposed put in the vertical tension /', and also the horizontal
forces forming a couple to which at any instant the twisting
action (of the portion of rod removed upon the part left in the
free body) is known to be due. Call the moment of this couple
@b (known as the moment of torsion); it is variable, being
directly proportional to the angle a; hence, if by experiment
it is found to be = @,5, when a is = a,, for any value of a it
will be @b = (@0, + a,)a = Ca, in which C is the constant
factor. :

At any instant, therefore, the forces acting are &, P’, and
those equivalent to the couple whose moment = @b = Ca.
(No lateral support is required ; the student would find the X,
Y,, X, and Y, of Fig. 129 to be individually zero, if put in;
remembering that here, z and y both = 0, as also /dMzz and
JdMyz; and that the forces of the couple will not be repre-
sented in any of the six summations of §114, except in
= moms.z)

From eq. (XIV.), § 114, we have — @b, i.e., — Ca, = 61,
from which

6 = — (C =+ Ipa, or, forshort, 0 = — Ba. . . (1)

Since B is constant, and there is an initial (angular) velocity
= @,, and since the variables 6, @, and a, in angular motion
correspond precisely to those (p, v, and ) of rectilinear motion,
it is evident that the present is a case of Aarmonic motion,
already discussed in Problem 2 of § 59. Applying the results
there obtained, since B of eq. (1) corresponds to the & of that
problem, we find that the oscillations are zsockronal, i.e., their
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durations are the same whatever the amplitude (provided the
elasticity of the rod is not impaired), and that the duration of
one oscillation (from one extreme position to the other) is

¢ = m <+ VB, or finally,
t=avVal,=Qb.. . . . . . (®

117. The Compound Pendulum is any rigid body allowed to
oscillate without friction under the action of gravity when
monnted on a horizontal axis. Fig. 131 shows the
body free, in any position during the progress of
the oscillation. C is the centre of gravity; let OC
= 8. From (XIV.),§ 114, we have 3 (mom. about
fixed axis)

= angul. ace. X mom. of inertia.

- Gssin a = 61,
and 6 = — @s sin a + [, = — Mgssin a +~ MK,

ie,0=—gssina+4'". . . . . (1)

Hence 6 is variable, proportional to sin a. Let us see what
the length I = OXK, of a simple circular pendulum, must be, to
have at this instant (i.e., for this value of a) the same angular
acceleration as the rigid body. The linear (tangential) accelera-
tions of K, the extremity of the required simple pendulum
would be (§ 77) p, = — g¢ sin a, and hence its angular accelera-
tion would = — ¢ sin @ =~ /. 'Writing this equal to 4 in eq.
(1), we obtain

l=k'+s . . . .« . .. (@

But this is ¢ndependent of a; therefore the length of the sim-
ple pendulum having an angular acceleration eqnal to that of
the oscillating body is the same in all positions of the latter,
and if the two begin to oscillate simultaneously from a position
of rest at any given angle a«, with the vertical, they will keep
abreast of each other during the whole motion, and hence bave
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the same duration of oscillation ; which is .". , for small ampli-
tudes (§ 18),

V=nVl-g=nVk>+gs . . . . (8)

K is called the centre of oscillation corresponding to the given
centre of suspension O, and is identical with the centre of por-
cussion (§113).

Ezample—Required the time of oscillation of a cast-iron
cylinder, whose diameter is 2 in. and length 10 in., if the axis
of suspension is taken 4 in. above its centre. If we use 32.2
for ¢, all linear dimensions should be in feet and times in
seconds. From § 100, we have

To= M 4+ 54 = MG v + - 1O = Mrky 308
From eq. (3), § 88,

I, = I+ M5 = M[rks .50 + §] = M X 0.170;
v B} =0.1708q. ft; .. #'= = YO.1T0 = (32.3XF) = 0.305 sec.

118. The Centres of Oscillation and Suspension are Inter-
changeable.—(Strictly speaking, these centres are points in the
line through the centre of gravity perpendicular to the axis of
suspension.) Refer the centre of oscillation A to the centre
of gravity, thus (Fig. 182, at (I.)):

Mk Mke+Me kS

8,=l—8= Ms —S—T 8='§—. (l)
Now invert the body and suspend it at K;
required CK,, or &, to find the centre of o
oscillation corresponding to A" as centre of |°
suspension. By analogy from (1) we have 8] 'f
8, = k¢' = & ; but from (1). &c' + 8, = s.-
8, = 8; in other words, X, is identical with (1)
0. Hence the proposition is proved. Fo. 132

Advantage may be taken of this to determine the length Z
of the theoretical simple pendulum vibrating seconds, and thus
finally the acceleration of gravity from formula (8), § 117, viz.,
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when ¢ = 1.0 and ! (now = ) has been determined experi-
mentally, we have

g (in ft. per sq. second) = L (in ft.) x =*. . . (2)

This most accurate method of determining g at any locality
requires the use of a bar of metal, furnished with a sliding
weight for shifting the centre of gravity,and with two project-
ing blocks provided with knife-edges. These blocks can also
be shifted and clamped. By suspending the bar by one knife-
edge on a proper support, the duration of an oscillation is com-
puted by counting the total number in as long a period of
time as possible; it is then reversed and suspended on the
other with like observations. By shifting the blocks between
successive experiments, the duration of the oscillation in one
position is made the same as in the other, i.e., the distance be-
tween the knife-edges is the length, Z, of the simple pendulum
vibrating in the computed time (if the knife-edges are not equi-
distant from the centre of gravity), and is carefully measured.
The 7 and ¢’ of eq. (3), § 117, being thus known, g may be com-
puted. Professor Bartlett gives as the length of the simple
pendulum vibrating seconds at any latitude 8

L (in feet) = 3.26058 — 0.008318 cos 28.

119. Isochronal Axes of Suspension.—J/n any compound
pendulum, for any axis of suspension, there are always three
others, parallel to it in the same gravity-plane, for which the
oscillations are made in the same time as for the first. For
any assigned time of oscillation #, eq. (8), § 117, compute the
corresponding distance CO = s of O from C;

. ME  n(MUkS -+ M
TV P | o __ (o]
ie., from "= Hgs = Mg ’
we have s= (gt"+2n") Lk V(g +4n) k5. . . (1)

Hence for a given #, there are two positions for the axis O
parallel to any axis through C, in any gravity-plane, on both
sides; i.e., four parallel axes of suspension, in any gravity-
plane, giving equal times of vibration ; for two of these axes
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we must reverse the body. E.g., if a slender, homogeneous,
prismatic rod be marked off into thirds, the (small) vibrations
will be of the same duration, if the centre of suspension is
taken at either extremity, or at either point of division.

Erample.—Required the positions of the axes of suspension,
parallel to the base, of a right cone of brass, whose altitude is
sixinches, radius of base, 1.20 inches, and weight per cubic inch
is 0.304 lbs., so that the time of oscillation may be a half-
second. (N.B. For variety, use the inch-pound-second system
of units, first consulting § 51.)

120. The Fly-Wheel in Fig. 133 at any instant experiences
a pressure P’ aguinst its crank-pin from the connecting-rod
and a resisting pressure P’ from the teeth of a spur-wheel with

Fie 133.

which it gears. Its weight & acts through C (nearly), and
there are pressures at the bearings, but these latter and G have
no moments about the axis C' (perpendicular to paper). The
figure shows it f7¢e, P being assumed constant (in practice
this depends on the resistances met by the machines which D
drives, and the flnctuation of velocity of their moving parts).
P’; and therefore T its tangential component, are variable,
depending on the effective steam-pressure on the piston at any
instant, on the obliquity of the connecting-rod, and in high-
speed engines on the masses and motions of the piston and con-
necting-rod. Let » = radius of crank-pin circle, and a the
perpendicular from C on P”. From eq. (XIV.), §114, we
have

Ir—Pla=6Il, ..0=Tr—Pla)y+1I, . (1
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as the angular acceleration at any instant ; substituting which in
the general equation (VIIL), § 110, we obtain

Iwdw = Trda — P'ada. . . . . (2)

From (1) it is evident that if at any position of the crank-pin
the variable 77 is equal to the constant P''a, 6 is zero, and
consequently the angular velocity @ is either a maximum or a
minimum. Suppose this is known to be the case both at m
and n; i.e.,suppose 7, which was zero at the dead-point A,
has been gradually increasing, till at n, 77 = P”a; and there-
after increases still further, then begins to diminish, until at m
Tr again = P"a, and continnes to diminish toward the dead-
point B. The angular velocity @, whatever it may have been
on passing the dead-point A, diminishes, since 6 is negative,
from A to n, where it is @,, a minimum ; increases from = to
m, where it reaches a8 maximum value, @,. n and m being
known points, and supposing @, known, let us inquire what
@, will be. From eq. (2) we have

I wdw =[mTrda—P” n"ada. . . (3

But 7da = ds = an element of the path of the crank-pin, and
also the “ virtual velocity” of the force 7, and ada = ds”,an
element of the path of a point in the pitch-circle of the fly-
wheel, the small space through which P is overcome in d.
Hence (3) becomes

I(w. — @) = [ Tds — P X linear are ZF. (4)

To determine ‘/:” Tds we might, by a knowledge of the vary-

ing steam-pressure, the varying obliquity of the connecting-rod,
etc., determine 7" for a number of points equally spaced along
the curve nm, and obtain an approximate value of this sum by
Simpeon’s Rule; but a simpler method is possible by noting
(see eq. (1), § 65) that each term 7ds of this smin = the corre-

sponding term Pdz in the series ‘/’: Pdz, in which P = the
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effective steam-pressure on the piston in the cylinder at any in-
stant, do the small distance described by the piston while the
crank-pin describes any ds, and »n’ and m’ the positions of the
piston (or of cross-head, as in Fig. 133) when the crank-pin is
at n and m respectively. (4) may now be written

I, — @) =, Pdo— P X linear arc ZF, (5)

from which @,, may be found as proposed. More generally, it
is available, alone (or with other equations), to determine any
one (or more, according to the numnber of equations) unknown
quantity. This problem, in rotary motion, is analogous to that
in § 59 (Prob. 4) for rectilinear motion. Friction and the in-
ertia of piston and connecting-rod have been neglected. As
to the time of describing the arc nm, from equations similar to
(5), we may determine values of @ for points along nm, divid-
" ing it.into an even number of equal parts, calling them ®,, w,,
etc., and then employ Simpson’s Rule for an approximate value

™ da .
of the sum Et: .A‘ - (from eq. (V1.), §110); e.g., with
four parts, we would have

[:t = 11—§ (angle nCm, u—meas.)[ L + + + + 1.] (6)

121. Numerical Example. Fly-Wheel. —(See Fig. 133 and
the equations of § 120.) Suppose the engine is non-condensing
and non-expansive (i.e., that £ is constant), and that

P =55001bs, »=26in. =3ft., e =2ft,

and also that the wheel is to make 120 revolutions per minute,
i.e., that its mean angular velocity is to be
@ = 33 X 27, ie., @ = 4= “ radians” per sec.
First, required the amount of the resistance P’ (constant)
that there shall be no permanent change of speed, i.e., that the
angular velocity shall have the same value at the end of a com-

plete revolution as at the beginning. Since an equation of the
form of eq. (5) holds good for any range of the motion, let
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that range be a complete revolution, and we shall have zero as
the left-hand member; /Pde = P X 2 ft. = 5500 lbs. X 2ft.,
or 11,000 foot-pounds (as it may be called); while P” is un-
known, and instead of lin. are £Z we have a whole circumfer-
ence of 2 ft. radius, i.e., 4« ft.;
<. 0=11,000 — P” X 4 X 3.1416; whence P" =875 lbs.
Secondly, required the proper wmass to be given to the fly-
wheel of 2 ft. radius that in the forward stroke (i.e., while the
crank-pin is describing its upper semicircle) the max. angular
velocity @,, shall exceed the minimum @, by only J;@’, assun-
ing (which is nearly true) that §(w, 4+ @,) = @'. There be-
ing now three unknowns, we require three equations, which
are, including eq. (5) of § 120, viz.:
M kc’i‘(wn + 07,.)(&2. - &7,,)

=./:‘Pda: — P” X linear arc EF’; (5)

ot @)= @'=47; (7) and @, — o, = o' =47 (8)
The points # and m are found most easily and with sufficient
accuracy by a graphic process. Laying off the dimensions to
scale, by trial such positions of the crank-pin are found that
7, the tangential component of the thrust 7’ produced in the
connecting-rod by the steam-pressure 2 (which may be resolved
into two components, along the connecting-rod and a normal
to itself) is =(a + r)P",i.e., is = 3500 lbs. These points will
be n and m (and two others on the lower semicircle). The
positions of the piston #’ and m/’, corresponding to » and m of
the crank-pin, are also found graphically in an obvious manner.
‘We thus determine the angle nCm to be 100°, so that linear
arc EF = }§§7 X 2 ft. = 12« ft., while

S Pdz=55001bs. X " do = 5500X#'m’=5500X 0.77 ft.,

n'm’ being scaled from the draft.

Now substitute from (7) and (8) in (5), and we have, with
ko= 2 ft. (which assumes that the mass of the fly-wheel is con-
centrated in the rim),
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(G + g) X'4 X 4m X 3w = 5500 X 0.77 — 875 X 3p=,
which being solved for & (with ¢ = 32.2; since we have used
the foot and second), gives G = 600.7 1bs.

The points of max. and min. angular velocity on the back-
stroke may be found similarly, and their values for the fly-
wheel as now determined ; they will differ but slightly from
the @, and @, of the forward stroke. Professor Cotterill says
that the rim of a fly-wheel should never have a max. velocity
> 80 ft. per sec.; and that if made in segments, not more than
40 to 50 feet per second. In the present example we have for
the forward stroke, from eqgs. (7) and (8), @,,= 13.2 (7-measure
units) per second; i.e., the corresponding velocity of the wheel-
rim is v, = W,a = 26.4 feet per second.

122. Angular Velocity Constant. Fixed Axis.—If w is con-
stant, the angular acceleration, 6, must be = zero at all times,
which requires = (mom.) about the axis of
rotation to be = 0 (eq. (XIV.), §114). An
instance of this occurs when the only forces
acting are the reactions at the bearings on
the axis, and the body’s weight, parallel to
or intersecting the axis; the values of these &
reactions are now to be determined for dif- / z
ferent forms of bodies, in various positions Fro. 14.
relatively to the axis. (The opposites and equals of these reac-
tions, i.e., the forces with which the axis acts upon the bearings,
are sometimes stated to be due to the ¢ centrifugal forces,” or
“ centrifugal action,” of the revolving body.)

Thake the axis of rotation for Z, then, with 6 = 0, the equa-
tions of § 114 reduce to

SX=—o'Mz; . . . . (IXa)
Y =—w'My; . . . . (Xa)
2Z= 0;. . . ... (XIa)
Z moms.y = — &@fdMyz; . . . (XIla.)
2 moms.y = + wfdMaz; . . . (XIIla)
Zmomsg= 0. . . . . .(XIVa)
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For greater convenience, let us suppose the axes X and ¥
(since their position is arbitrary so long as they are perpen-
dicular to each other and to Z) fo revolve with the body in its
uniform rotation.

122a. If a homogeneous body have a plane of symmetry
and rotate uniformly about any axis Z perpendicular to that
plane (intersecting it at O), then the acting forces are equiva-

. lent to a single force, = o Mp, applied
at O and acting in a gravity-line, but
directed away jfrom the centre of
gravity. 1t is evident that such a
X force P = w'Mp, applied as stated

(see Fig. 135), will satisfy all six con-
ditions expressed in the foregoing equations, taking X through
the centre of gravity, so that z = p. For, from (IXa.), P must

= w'Mp, while in each of the other summations the left-
hand member will be zero, since P lies in the axis of X ; and
as their right-hand members will also be zero for the present

body (y = 0; and each of tle sums /d Myz and f/d Mz is zero,
since for each term dMy(--z) there is another dMy( — 2)
to cancel it; and similarly, for /d Mxz), they also are satisfied ;
Q.E.D.* Hence a single point of support at O will suffice to
maintain the uniform motion of the body, and the pressure
against it will be equal and opposite to P. '

First Erample—Fig. 136. Supposing (for greater safety)
that the uniform rotation of 210 revolutions
per minute of each segment of a fly-wheel is
maintained solely by the tension in the cor-
responding arm, P ; required the value of P
if the segment and arm together weigh 4 of
a ton, and the distance of their centre of Fia. 186.
gravity from the axis is p = 20 in.,i.e., = § ft. With the foot-
_ Zon-second system of units, with g = 32.2, we have

P = o' Mp = [3¢2 X 277" X [gy + 32.2] X § = 0.83 tons,
or 1660 1bs.

Fia. 135.

e

* That is, negiecting gravity.
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Second Evample.—Fig. 137. Suppose the uniform rotation
of the same fly-wheel depends solely on the tension in the rim,
required its amount. The figure shows the half- «
rim free, with the two equal tensions, P, put in at 3
the surfaces exposed. Here it is assnmed that the | _¢
arms exert no tension on the rim. From §122a we ﬁr—

have 2P’ = w'Mp, where M is the mass of the half- 4
rim, and p its gravity co-ordinate, which may be ob-  Fia. 187.
tained approximately by § 26, Problem 1, considering the rim
as a circular wire, viz., p = 2» + .

Let M = (180 1bs.) + g, with » = 2 ft. 'We have then

P’ = }(22)'(180 + 32.2)(4 + 7) = 1718.0 Iba.

(In reality neither the arms nor the rim sustain the tensions
just computed ; in treating the arms we have supposed no duty
done by the rim, and vice versd. The actual stresses are less,
and depend on the yielding of the parts. Then, too, we have
supposed the wheel to take no part in the transmission of mo-
tion by belting or gearing, which would cause a bending of the
arms, and have neglected its weight.)
122b. If a homogeneous body have a line of symmetry and
rotate uniformly about an awis parallel to it (O being the foot
of the perpendicular from the centre of gravity on the axis),
then the acting forces are equivalent to a single force P
= &' Mp, applied at O and acting in a gravity-line away
Jrom the centre of gravity.
Taking the axis X through the
am centre of gravity, Z being the
] axis of rotation, Fig. 188; while
Z' is the line of symmetry, pass
an auxiliary plane Z'Y” parallel
to ZY. Then the sum /dMxz

may be written /dM(p + ')z
which = pfdMz + [fdMo'2.

Fra. 138, But fdMz = Mz = 0, since z
= 0, and every term d M(+} «’)z is cancelled by a numerically
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equal term d M{— ')z of opposite sign. Hence /dMzz = 0.
Also fd Myz = 0, since each positive product is annulled by an
equal negative one (from symmetry about Z’). Since, also,
y =0, all six conditions in § 122 are satisfied. Q.E.D.

If the homogeneous body is any solid of revolution whose
geometrical axis 18 parallel to the axis of rotation, the forego-
ing is directly applicable.

122¢. If a homogeneous body revolve wniformly about any
awis lying in @ plane of symmetry, the acting forces are equiv-
alent to a single force P = &' Mp, acting parallel to the grav-
wty-lime which 18 perpendicular to the axis (Z), and away
Jrom the centre of gravity, its distance from any origin O in
the awis Z being =[fdMxz)] + Mp (the plane ZX being a
gravity-plane).—Fig. 139. From the position of the body we
have p = @, and y = 0; hence if a
value @'Mp be given to P and it be
made to act through Z and parallel to
X, and away from the centre of gravity,
all the conditions of § 122 are satistied
except (X1lIa.) and (XIITa.). Bat
symmetry about the plane XZ makes

Fio. 189, JAMyz = 0, and satisfies (X1Ia.), and
by placing P at a distance @ = /d Mxz + Mp from O along Z
we satisfy (XIIIa.). Q.E.D.

Ewa/mple —A slender, homogeneous, prismatic rod, of length
=/, is to have a uniform motion, about a ver- ¢ | p’
tical axis passing through one extremity, | ..z,
maintained by a cord-connection with a fixed p D
point in this axis. Fig. 140. Given w, @, 7, 1

(P = #7 cos @), and F' the cross-section of the | /<
rod, let 8 = the distance from O to any dM |

of the rod. dM being = Fyds <+ g. The @ 10 ¢
of any dM = 8 cos @; its 2= 8.sin @; Fie. 140.

~JBMzz = (Fy =+ g) sin @ cos @ ‘/:l s'ds
= §(Fyl + g)l' sin @ cos @ = M I sin @ cos .

194

[P
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Hence a, = fdMzz < Mp, is = § sin @, and the line of ac-
tion of P (= &'Mp = & (Fyl + g)$l cos @) is therefore
kigher up than the middle of the rod. Find the intersection
D of @ and the horizontal drawn through Z at distance @ from
0. Determine P’ by completing the parallelogram G, at-
taching the cord so as to make it coincide with P’; for this will
satisfy the condition of maintaining the motion, when once be-
gun, viz., that the acting forces @, and the cord-tension 7,
shall be equivalent to a force P = w*Mp, applied horizontally
throngh Z at a distance a from O. :

123. Free Axes. Uniform Rotation.—Referring again to § 122
and Fig. 134, let us inquire under what circumstances the
lateral forces, X,, ¥, X,, Y, with which the bearings press
the axis, to maintain the motion, are individually zero, i.e., that
the bearings are not needed, and may therefore be removed
(except a smooth horizontal plane to sustain the body’s weight),
leaving the motion undisturbed like that of a top ‘“asleep.”
For this, not only must ZX and = Y both be zero, but also
(since otherwise X, and X, might form a couple, or ¥, and ¥,
similarly) = (moms.)yand = (moms.)y must each = zero. The
necessary peculiar distribution of the body’s mass about the
axis of rotation, then, must be as follows (see the equations of
§122):

First, z and y each = 0, i.e., the awis must be a gravity-axis.

Secondly, fdMyz = 0,and fd Mzz = 0, the origin being any-
where on Z, the axis of rotation.

An axis (Z) (of a body) fulfilling these conditions is-called
a Pree Axis, and since, if either one of the three Principal Axes
for the centre of gravity (see § 107) be made an axis of rotation
(the other two being taken for X and Y'), the conditions
2=0,y =0, fdMzz = 0, and fdMyz = 0, are all satisfied,
it follows that every rigid body has at least three free awes,
which are the Principal Awes of Inertia of the centre of
gravity at right angles to each other.

In the case of Aomogencous bodics free axes can often be
determined by inspection : e.g., any diameter of a sphere; any
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transverse diameter of a right circular cylinder through its
centre of gravity, as well as its geometrical axis; the geomet-
rical axis of any solid of vevolution; ete.

124. Rotation about an Axis which has a Motion of Translation.
—Taks only the particular case where the moving axis s a
gravity-axis. At any instant, let the
dM ap velocity and acceleration of the axis be o -
and p; the angular velocity and accelera-
) "\\x tion about that axis, @ and 6. Then, since
v *P the actnal motion of a dM in any d¢ is
/ compounded of its motion of rotation
about the gravity-axis and the motion of
translation in common with that axis,
Fro. 141. we may, in forming the imaginary equiva-
lent system in Fig. 141, consider each dM as subjected to the
simultaneous action of dP = dMp parallel to X, of the tan-
gential 7 = dM6p, and of the normal dN = dM (wp)' + p
= w'dMp. Take X in the direction of translation, Z (perpen-
dicular to paper through O) is the moving gravity-axis; ¥
perpendicular to both. At any instant we shall have, then, the
following conditions for the acting forces (remembering that
psin o =y, [dMy = My = 0; etc.):
SX =/dP — fdTsin ¢ — fdN cos ¢ = Mp; . (1)
2Y = /fdT cos ¢ — fdN sin @ =0;. . (2
2 moms.; =/dTp — fdPy= 6fdMp' = 01, = OMks, (3)
and three other equations not needed in the following example.
Erxample— A homogeneous solid of revolution rolls (with-
out slipping) down a rough inclined
Investigate the motion. Con- 0 NP
sidering the body free, the acting forces i
are ¢ (known) and ¥ and P, the un- 4
known normal and tangential compo- ‘P
nents of the action of the plane on the P
roller. If slipping occurs, then 2P is the Fie. 143.
sliding friction due to the pressure ¥V (§ 156); here, however, it is
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less by hypothesis (perfect rolling). At any instant the four
unknowns are found by the equations
Z2X,ie, Gein g — P,=(G=+g)p; . Q)
2ZY,ie,Gcosf—N,=0; . . . . (2
= moms.g, i.e., Pa, = 60MEk;; . . (8)
while on account of the perfect rolling,
a=p.. . . . . ... 4
Solving, we have, for the acceleration of translation,
p=gsin f+ (14 (k' + @)].
(If the body slid withont friction, p would = gsin £.) Hence
for a cylinder (§ 97), k7" being = }a", we have p = §¢ sin §;
and for a sphere (§ 103) p = §g sin B.

(1f the plane is so steep or so smooth that both rolling and
slipping occur, then 6a no longer = p, but the ratio of P to ¥
is known from experiments on sliding friction ; hence there are
still four equations.)

The motion of translation being thus found to be uniformly
accelerated, we may use the equations of § 56 for finding dis-
tance, time, ete.

Query—How may we distinguish two spheres by allowing
them to roll down the same inclined plane, if one of them is
silver and solid, while the other is of gold, but silvered and
hollow. 80 as to be the same as the first in diameter, weight,
and appearance?

125. Parallel-Rod of a Locomotive.—When the locomotive
moves uniformly. each dM of the rod between the two (or
three) driving-wheels rotates with

uniform velocity about a centre of its B DO+,
own on the line BD, Fig. 143, and %) )
with a velocity » and radins # common

to f;ll, and ]i'kewise has a horizontal \U\U&N)
uniform motion of translation. Hence ()

if we inquire what are the reactions P Fia. 18,

of its supports, as induced solely by s weight and motion,
when iu its lowest position (independently of any thrust along
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the rod), we put Y of (I) = 2 ¥ of (IL) (II. shows the
inaginary equivalent system), and obtain

2P — G =/fdN = fdMv' +~r = (V" =+ r)fd M = M + .
Envample.—Let the velocity of translation = 50 miles per
hour, the radius of the pins be 18 in. = § ft., and = Aalf that

of the driving-wheels, while the weight of the rod is 200 lbs:
With ¢ = 32.2, we must use the foot and second, and obtain

v = §[50 X 5280 = 3600] ft. per second = 36.6;
while M = 200 <+ 32.2 = 200 X .0310 = 6.20;
and finally P = $[200 4 6.2(36.6)'= §] = 2868.3 lbs.,

or nearly 1% tons, about thirty times that due to the weight
alone.

126. So far in this chapter the motion has been prescribed,
and the necessary conditions determined, to be fulfilled by the
acting forces at any instant. Problems of a converse nature,
i.e., where the initial state of the body and the acting forces
are given while the resulting motion is required, are of much
greater complexity, but of rare occurrence in practice. The
reader is referred to Rankine’s Applied Mechanics. A treat-
ment of the Gyroscope will be found in the American Journal
of Science for 1857, and in the article of that name in Johnson’s
Cyclopeedia.
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" CHAPTER VI.
WORK, ENERGY, AND POWER.

127. Remark.—These quantities as defined and developed
in this chapter, though compounded of the fundamental ideas
of matter, force, space, and time, enter into theorems of such
wide application and practical use as to more than justify their
consideration as separate kinds of quantity.

128. Work in a Uniform Translation. Definition of Work.—
Let Fig. 144 represent a rigid body having a motion of trans-
lation parallel to X, acted on by a
system of forces P,, P,, R, and B,, "
which remain constant.

Let & be any distance described by
the body during its motion ; then = X
must be zero (§ 109), i.e., noting that
R, and R, have negative X com-
ponents (the supplements of their
angles with X are used),

P, cos a,+ P,cos a, — R,cos a, — R, cosa,=0;

or, multiplying by ¢ and transposing, we have (noting that
8 co8 a, = 8, the projection of s on P, that & cos a, = s,, the
projection of 8 on P, and so on),

Ps + Py, =Rs,+Rs. . . . . (2

The projections 8, s,, etc.,, may be called the distances de-
scribed in their respective directions by the forces P,, P, etc.;
P, and P, having moved forward, since 8, and s, fall ¢n_front
of the initial position of their points of application; &, and B,
backward, since s, and 8, fall behind the initial positions in
their case. (By forward and backward we refer to the direc-
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tion of each force in turn.) The name Work is given to the
product of a force by the distance described in the direction
of the force by the point of application. 1f the force moves
Jorward (see above), it is called a workingforce, and is said to
do the work (e.g., P,8,) expressed by this product; while if
backward, it is called a resistance, and is then said 2o Aave the
work (e.g., 12,8,), done upon 4, in overcoming ¢ through the
distance mentioned (it might also be said to have done nega-
tive work).

Eq. (a) above, then, proves the theorem that : In a uniform
tramslation, the working forces do an amount of work whick
8 enterely applied to overcoming the resistances.

129. Unit of Work.—Since the work of a force is a product
of force by distance, it may logically be expressed as so many
foot-pounds, inch-pounds, kilogram-meters, according to the
system of units employed. The ordinary English unit is the
foot-pound, or ft.-lb. It is of the same quality as a force-
moment.

180. Power.—Work as already defined does not depend on
the time occupied, i.e., the work P,s, is the same whether per-
formed in a long or short time; but the element of time is of
go great importance in all the applications of dynamics,as well
a8 in such practical commercial matters as water-supply, con-
sumption of fuel, fatigue of animals, ete., that the rate of work
is a consideration both of interest and necessity.

Power is the rate at which work ¢s done, and one of its
units is one foot-pound persecond in English practice ; a larger
one will be mentioned presently.

The power ewerted by a working force, or expended upon a
resistance, may be expressed §ymbolically as

L=Pg +t or Rg =t
in which £ is the time occupied in doing the work P.s, or R.s,.

(see Fig. 144); or if v, is the component in the direction of
the force P, of the velocity v of the body, we may also write

L=Pp. . . . . . . . ®)
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131. Erample.—Fig. 145, shows as a free body a sledge
which is being drawn uniformly up N &P
a rough inclined plane by a cord -
parallel to the plane. Required the
total power exerted (and expended), o ’ 0
if the tension in the cord is P, =100 -~ gfv\ R weiahm
lbs., the weight of sledge R, = 160 Fia. 145, ‘
Ibe., # = 30° and the sledge moves 240 ft. each minute. &N
and &, are the normal and parallel (i.e., B, = friction) com-
ponents of the reaction of the plane on the sledge. From eq.
(1), § 128, the work done while the sledge advances through
8 = 240 ft. may be obtained either from the working forces,
which in this case are represented by P, alone, or from the
resistances &, and B,. Take the former method first. Pro-
jecting & upon P, we have s, = s.
Hence P, or 100 1bs. X 240 ft. = 24,000 ft.-1bs.

of work done in 60 seconds. That is, the power exerted by the
working forces is

L = P, + t = 400 ft.-Ibs. per second.
As to the other method, we notice that %, and R, are resist-
ances, since the projections 8, = ¢ sin @, and 8, = &, would fall
back of their points of application in the initial position, while
N is neutral, i.e., is neither a working force nor a resistance,
since the projection of & upon it is zero. :
From  2X =0 wehave — B, — Ry sin g+ P, = 0,
and from ZY = 0 (§109) N — Rycos 8 = 0;
whence R, the frniction = 20 lbs., and V = 138.5 Ibs. Also,
since 8, = s sin § = 240 X {4 = 120 ft.,, and s, = s, = 240 ft.,
we have for the work done upon the resistances (i.e., in over-
coming them) in 60 seconds

Ry, + R, =160 X 120 4 20 X 240 = 24,000 ft.-Ibs,,

and the power expended in overcoming resistances,
L = 24,000 =+ 60 = 400 ft.-lbs. per second,
as already derived. Or, in words the power exerted by the
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tension in the cord is expended entirely in raising the weight
a vertical height of 2 feet, and overcoming the friction through
a distance of 4 feet along the plane, every second ; the motion
being a uniform translation.

132. Horse-Power.—As an average, a horse can exerts a trac-
tive effort or pull of 100 lbs., at a uniform pace of 4 ft. per sec-
ond, for ten hours a day without too great fatigne. This gives
a power of 400 ft.lbs. per second; but Boulton & Watt in
rating their engines, and experimenting with the strong dray-
horses of London, fixed upon 550 ft.-1bs. per second, or 33,000
ft.-lbs. per minute, as a convenient large unit of power. (The
French horse-power, or cheval-vapeur, is slightly less than the
English, being 75 kilogrammeters per second, or 32,550 ft.-lbs.
per minute.) This value for the horse-power is in common
use. In the example in § 131, then, the power of 400 ft.-lbs.
per second exerted in raising the weight and overcoming fric-
tion may be expressed as (400550 =) 4 of a horse-power. A
man can work at a rate equal to about fiy of a horse-power,
with proper intervals for cating and sleeping.

133. Kinetic Energy. Retarded Translation.—In a retarded
translation of a rigid body whose mass = M, suppose there
are no working-forces, and that the resistances are constant and
their resultant is 2. (E.g., Fig. 146 shows such a case; a

N sledge, having an initial velocity ¢ and slid-
— v Ing on a rough horizontal plane, is gradu-
_ ally retarded by the friction 22.) Ris par-

G allel to the direction of translation (§ 109)
Fio. 146. and the acceleration is p = — R + M;
" hence from vdv = pds we have

Svdv=—Q1+M)fRds. . . . . (1)
But the projection of each ds of the motion upon R is = ds
itself ; i.e. (§ 128), Rds is the work done upon R, in overcom-
ing it through the small distance ds, and /'/2ds is the sum of

all such amounts of work thronughout any definite portion ot
the motion. Let the range of motion be between the points
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where the velocity = ¢, and where it = zero (i.e., the mass
hias come to rest) With these limits in eq. (1) (0 and & be-
ing the corresponding limits for s), we have

Mc_fRds......(c)

. That is, ¢n giving up all its velocity ¢ the body has been able
to do the work fRda (this, if R remains constant, reduces to

Rs’) or its equal —— M . If, then, by energy we designate the

ability to perform 'work, we give the name kinetic energy of
a moving body to the product of its mass by half the square

of its velocity (22

quated term v¢8 viva was once applied to the form M)

); i.e., energy due to motion. (The anti-

134. Work and Kinetic Energy in any Translation.—Let P
be the resultant of the working forces at any instant, & that
of the resistances ; they (§ 109) will both M _
act in a gravity-line parallel to the di- g 1wl By
rection of translation. The acceleration 0.~ _4.__:9”,

at any instant is » = (2X + M) % Fra. 147,
= (P — R) + M ; hence from vdv = pds we have

Mvdv=Pds — Rds. . . . . . (1)

Integrating between any two points of the motion as 0 and 0’
where the velocities are 9, and ', we have after transposition

dee—/’Rds+[M”" M” .. @

But P being the resultant of P, P, etc, and R that of
R, R, etc., we may prove, as in § 62, that if du du,, etc., be
the respective projections of any d¢ upon P, P,. etc., whxle
dw,, dw,, etc., are those upon R,, R,, etc., then
Pds=P du~+Pdu+.... and Rds=Rdw+Radw,....;
and (d) may be rewritten
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[P,du,+[P,du,+....
=[R,dm,+[R,dw,+_....+ ”—2""—1%' : ()

or, in words: In any translation, a portion of the work done

" by the working forces is applied in overcoming the resistances
while the remainder equals the change in the kinetic energy of
the body.

It will be noted that the bracket in (¢) depends only on the
initial and final velocities, and not upon any intermediate
values ; hence, if the initial state is one of rest, and also the
final, the total change in kinetic energy is zero, and the work
of the working forces has been entirely expended in the work
of overcoming the resistances; but at intermediate stages the
former exceeds the work so far needed to overcome resistances,
and this excess is said to be sfored in the moving mass; and as
the velocity gradually becomes zero, this stored energy becomes
available for aiding the working forces (which of themselves
are then insufficient) in overcoming the resistances, and is then
said to be restored. (The function of a fly-wheel might be
stated in similar terms, but as that involves rotary motion it
will be deferred.)

Work applied in increasing the kinetic energy of a body is
sometimes called “ work of inertia,” as also the work done by
a moving body in overcoming resistances, and thereby losing

speed.

135. Example of Steam-Hammer.—Let us apply eq. (¢) to-
determine the velocity o’ attained by a steam-hammer at the
lower end of its stroke (the initial velocity being = 0), just
before delivering its blow upon a forging, supposing that
the steam-pressure P, at all stages of the downward stroke is
given by an indicator. Fig. 148. Weight of moving mass
is 822 1bs.; .". M =10 (foot-pound-second system), Z =1 foot.
The working forces at any instant are P, = @ = 322 lbs.; P,,
which is variable, but whose values at the seven equally spaced
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points a, b, ¢, d, ¢, f, g, are 800, 900, 900, 800, 600, 500, 450
lbs., respectively. R, the exhaust-pressure (16 .

lbs. per sq. inch X 20 sq. inches piston-area) =
320 lbs., is the only resistance, and is constant.
Hence from eq. (¢), since here the projections
du,, ete., of any ds upon the reapective forces
are equal to each other and =

Pt [Pas= Rfda+ 2w

The term /P,ds can be obtained approximately
by Simpson’s Rule, nsing the above values for
six equal divisions, which gives é%
25[800 + 4(900 + 800 + 500) ¥
-+ 2(900 + 600) - 450] Fio. 148
= 725 ft.-1bs. of work. - Hence, making all the substitutions,

we have, since f ds =1 ft.,

322 X 14 725 =820 X 1+ §Mo"; ... $ Mv" = 727 ft.-1bs.
of energy to be expended in the forging. (Energy is evi-
dently expressed in the same kind of unit as work.) We may
then say that the forging receives a blow of 727 ft.-lbs.
energy. The pressure actually felt at the surface of the ham-
mer varies from instant to instant during the compression of
the forging and the gradual stopping of the hammer, and
depends on the readiness with which the hot metal yields.

If the mean resistance encountered is R, and the depth of
compression &, we would have (neglecting the force of gravity,
and noting that now the initial velocity is »’, and the final
zero), from eq. (c),

$Mv"* = R,8"; ie., B, = [127 + 8" (ft.)] Ibs.

Eg., if &/ = } of an inch = ¢ of a foot, R, = 43620 Ibs.,
and the maximum value of & would probably be about double
this near the end of the impact. If the anvil also sinks during

the impact a distance 8"/, we must substitute s’ 4 s/ instead
of #’; this will give a smaller value for 2,

S Sy

<
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By mean value for 2 is meant [eq. (c)] that value, /2., which

satisfies the relation
R = [ Ris.

This may be called more explicitly a space-average, to dis-
tinguish it from a ¢ime-average, which might appear in some
problems, viz., a value R, to satisfy the relation (¢’ being the
duration of the impact)

Bt = /‘ Rdt,

and is different from R,
From $ Mo = 727 ft..lbs., we have v’ = 12.08 ft. per sec.,
whereas for a free fall it would have been 42X 32.2x1 = 8.03.

{This example is virtually of the same kind as Prob. 4, §59
differing chiefly in phraseology.)

136. Pile-Driving.—The safe load to be placed upon a pile after
the driving is finished - is generally taken as a fraction (from }
to 3) of the resistance of the earth to the passage of the pile as
indicated by the effect of the last few blows of the ram, in ac-
cordance with the following approximate theory: Toward the
s end of the driving the resistance 2 encountered by
: the pile is nearly constant, and is assumed to be that

met by the ram at the head of the pile; the distance
&' through which the head of the pile sinks as an
effect of the last blow is observed. If @, then, is
the weight of the ram, = Mg, and A the height of
free fall, the velocity due to A, on striking the pile,

is ¢ = ¥2gk (§ 52), and we have, from eq. (o),
M, e, Oh = Ras=Re . . (1)

- T (R being considered constant) ;‘ hence R = Gk + ¢/,
m‘: 1o, and the safe load (for ordinary wooden piles),

P=from}toyof Gh+s. . . . . (2

Maj. Sanders recommends } from experiments made at Fort

—_— _‘#
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Delaware in 1851; Molesworth, 3; General Barnard, §, from
extensive experiments made in Holland.

Of course from eq. (2), given P, we can compute &'.

(Owing to the.uncertainty as to how much of the resistance
R is due to friction of the soil on the sides of the pile, and
how much to the inertia of the soil around the shoe, the more
elaborate theories of Weisbach and Rankine seem of little
practical account.)

187. Exzample.—In' preparing the foundation of a bndge-pxer
it is found that each pile (placing them 4 ft. apart) must bear
safely a load of 72 tons. If the ram weighs one ton, and falls
12 ft., what should be the effect of the last blow on each pile?
Using the foot-ton-second system of units, and Molesworth

factor }, eq. (2) gives
& = (1 X 12 + 72) = g of a foot = } of an inch.

That is, the pile should be driven until it sinks only } inch
under each of the last few blows.

138. Kinetio Energy Lost in Inelastic Direct Central Impact.—
Referring to § 60, and using the same notation as there given,
we find that if the united kinetic energy possessed by two in-
elastic bodies after their impact, viz., $ #,0* 4 3 M,C*, C hav-
ing the value (M., + M,c,) + (M, + M,), be deducted from
the amount before impact, viz., $M,¢," + 3 Mc.’, the loss of
kinetic energy during impact of two inelastic bodies is

MM, .
3[._'|_M’c,—c,). ),

An equal amount of energy is also lost by partially elastic
bodies during the first period of the impact, but is partly re-
gained in the'second. If the bodies were perfectly elastic, we
would find it wholly regained and the resultant loss zero, from
the equations of §60; but this is not quite the reality, on
account of internal vibrations.

The kinetic energy still remaining in two inelastic bodies
after impact (they move together as one mass) is

W=
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(M, 4+ M,)C", or, after ingerting the value of
O = (Mo, + o) + (M, + I, we have
' 1 [Me, + Me]
W:g.—mT—. e e 4 e e (2)
n  Erzample 1.—The weight ¢, = M g falls freely
through a height A, impinging upon a weight G,
= M,g, which was initially at rest. After their (#n-
elastic) impact they move on together with the com-
bined kinetic energy just given in (2), which, since
¢, and ¢,, the velocities before impact, are respectively
¥2gh and 0, may be reduced to a simpler form.
This energy is soon absorbed in overcoming the
flange-pressure 22, which is proportional (so long as
the elasticity of the rod is not impaired) to the
elongation &, as with an ordinary spring. If from
Fo. 150, previous experiment it is known that a force R,
produces an elongation g, then the variable B = (R, + s,)s.
Neglecting the weight of the two bodies as a working force,
we now have, from eq. (@),

_ R, Mgh
O—‘To. 8d8+0— ,+.E,

. R, & M'gh
lew S g =3y - - 3)

When ¢ = ¢, i, when the masses are (momentarily) at rest
in the lowest position, the flange-pressure or tensile stress in the
rod is a maximum, B’ = (&, < 8,)8’, whences’' = R’s, - R,;
and (3) may be written

R, Mgh
T&—m,..... .(4)
R%, _ Mh

or 2R° - Ml +M;' . . . . . 3 (5)

Eq. (8) gives the final elongation of the rod, and (5) the greatest
tensile force upon it, provided the elasticity of the rod is not
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impaired. The form $R’s’ in (4) may be looked npon as a direct
integration of /" Lds, viz., the mean resistance (32’') multi-

plied by the whole distance (s) gives the work done in over-
coming the variable & through the successive ds's.

If the elongation is considerable, the working-forces @, and
@, cannot be neglected, and would appear in the term 4 (&,
-+ G.)¢ in the right-hand members of (3). (4), and (5). The
upper end of the rod is firmly fixed, and the rod itself is of
small mass compared with M, and X,.

FErample 2—Two cars, Fig. 151, are connected by an elastic
chain on a horizontal track. Velocities before impact (i.e.,
before the stretching of the chain be- ——e¢, o ——e
gins, by means of which they are
brought to a common velocity at the M, M,
instant of greatest tension &', and Fro. 161.
elongation & of the chain) are ¢, = ¢,, and ¢, = 0.

During the stretching, i.e., the first period of the impact, the
kinetic energy lost by the masses has been expended in stretch-
ing the chain, i.e., in doing the work $/2s’; hence we may
write (the elasticity of the chain not being impaired) (see eq. (1))

M M ,,_R‘, & R,
iM—i—M——R ?.5—2—1&-, o . (6)
in which the different symbols have the same meaning as in
Example 1, in which the rod corresponds to the chain of this
example.

In this case the mutual accommodation of velocities is due
to the presence of the chain, whose stretching corresponds to
the compression (of the parts in contact) in an ordinary impact.

In numerical substitution, 32.2 for g requires the use of the
units foot and second for space and time, while the unit of
force may be anything convenient.

189. Work and Energy in Rotary Motion. Axis Fixed. —
The rigid body being considered free, let an axis through O
perpendlcuhr to the paper be the axis of rotation, and resolve
all forces not intersecting the axis into components parallel
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and perpendicular to the axis, and the latter again into com-
ponents tangent and normal to the circular path of the point
of application. These tangential com-
ponents are evidently the only ones
of the three sets mentioned which
have moments about the axis, those
having moments of the same sign as
@ (the angular velocity at any instant)
being called working forces, T,, T,
etc.; those of opposite sign, resist-

Fro. 132. ances, T, T, etc.; for when in time
dt the point of application B,, of 7, describes the small arc
ds, = a,da, whose projection on 7 is = ds,, this projection
falls akead (i.e., in direction of force) of the position of the
point at the beginning of d¢, while the reverse is true for 7.

From eq. (XIV.), §114, we have for 6 (angul. accel.)

6= (Tﬂ.'{'TﬂH'----)—(T.'a:"'i'z'“."*-----)
- 7

»(1)

which substituted in wdw = 6da (from § 110) gives (remem-
bering that a,da = ds,, etc.), after integration and transposition,

/"]'Idg‘ +'/°m T, ds, + ete.
= Tas) + [ Tids) + ete.+ o] — o1, (2)

where 0 and n refer to any two (initial and final) positions of
the rotating body. Eq. (4), § 120, is an example of this.

Now 3w,'] = }w,fdMp' = [4d M{w,.p)", which, since . p
is the actual velocity of any d.M at this (final) instant, is nothing
more than the sum of the amonnts of kinetic energy possessed
at this instant by all the particles of the body ; a similar state-
ment may be made for 3w,' /.

Eq. (2) therefore may be put into words as follows:

Between any two positions of a rigid body rotat'mg about @
ﬁa:ed axi8, the work done by the working forces s pa«rtly used
in overcoming the resistances, and the remainder in changing
the kinetic energy of the individual particles. If in any case
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this remainder is negative, the final kinetic energy is less than
the initial, i.e., the work done by the working forces is less than
that necessary to overcome the resistances through their respee-
tive spaces, and the deficiency is made up by the resforing of
some of the initial kinetic energy of the rotating body. A
moving fly-wheel, then, is a reservoir of kinetic energy.

Eq. (2) has already been illustrated nmmnerically in §121,
where the additional relation was utilized (for a connecting-rod
and piston of emall mass), that the work done in the steam-
cylinder is the same as that done directly at the crank-pin by
the working-force there.

140. Work of Equivalent Systems the Same.—If two plane
systems of forces acting on @& rigid body are equivalent (§ 15a),
the aggregate work done by etther of them during a given slight
displacement or motion of the body parallel to their plane is
the same. By aggregate work is meant what has already been
defined as the sum of the “ virtual moments” (§§ 61 to 64), in
any small displacement of the body, viz., the algebraic sum of
the products, = (Pdu), obtained by multiplying each force by
the projection (du) of the displacement of (or small space
described by) its point of application upon the force. (We
here class resistances as negative working forces.)

Call the systems A and B; then,if all the forces of B were
reversed in direction and applied to the body along with those
of A, the compound system would be a balanced system, and
hence we would have (§ 64), for a small motion parallel to the
plane of the forces,

2(LPdu) =0, i.e., Z(Pdu) for A — Z(Pdu) for B = 0,
or + 3(Pdu) for A = + Z(Pduw) for B.

But 4+ = (Pdu) for A is the aggregate work done by the forces
of A during the given motion, and + =(Pdw) for B is a
similar quantity for the forces of B (not reversed) during the
same small motion if B acted alone. Hence the theorem is
proved, and could easily be extended to space of three dimen-

sions.
10
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141. Relation of Work and Kinetic Energy for any Extended
Motion of a Rigid Body Parallel to a Plane.—(If at any instant
any of the forces acting are not
parallel to the plane mentioned,
their components lying in or
parallel to that plane, will be used
instead, since the other compo-
nents obviously would be neither
working forces nor resistances.)

Fio. 183, Fig. 153 shows an initial position,
o, of the body; a final, n; and any intermediate, as ¢. The
forces of the system acting may vary in any manner during
the motion. ~

In this motion each dM describes a curve of its own with
varying velocity », tangential acceleration p,, and radius of
curvature 7 ; hence in any position ¢, an imaginary system B
(see Fig. 154), equivalent to the actual system A (at ¢ in Fig.
158), would be formed by applying to each dif a
tangential force d7'= dMp,, and a normal force
dN = dMv* + r. By an infinite number of con-
secutive small displacements, the body passes from
o ton. In the small displacement of which ¢ is the
initial position, each dM describes a space ds, and ya, 150
dT does the work d7ds = d Medv, while dV does the work-
dN X 0 = 0. Hence the total work done by B in the small
displacement at ¢ would be

=dMv'dv + dM'"v'dv +ete, . . . (1)

including all the d¥ ’s of the body and their respective veloci-
ties at this instant.

But the work at ¢ in Fig. 153 by the actunal forces (i.e., of
system A4) during the same small displacement must (by § 140)
be equal to that done by B. hence

Pdu, + Pdu,+ ete. = dM'v'dv' { dM''v"dv"” - ete. (g)

"Now conceive an equation like (¢) written out for each of
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the small consecutive displacements between positions o and
n and corresponding terms to be added ; this will give

-/.. } Pdu, + ‘/o. ”P,du,+ ete.

=dM f v +dM”’ /" v"dv"” 4 ete.
= M (v," — v,") + M (v — v,"") + ete.
The second member may be rewritten so as to give, finally,

S Paut S " P du,tete.=S@Fd Mo, — SGd M), (XV.)

or, in words, the work done by the acting forces (treating a re-
sistance as a negative working force) between any two posi-
tions 48 equal to the gain (or loss) in the aggregate kinetic
enerqy of the particles of the body between the two poaztwm
To avoid confusion, = has been used instead of thé sign /" in
one member of (XV.), in which v, is the final velocity of any
dM (not the same for all necessarily) and v, the initial.

(The same method of proof can be extended to three dimen-
sions.)

Since kinetic energy is always essentially positive, if an ex-
pression for it comes out negative as the solution of a problem,
some impossible conditions have been imposed.

142. Work and Kinetic Energy in a Moving Machine.—
Defining a mechanism or machine as a series of rigid bodies
jointed or connected together, so that working-forces applied
to one or more may be the means of overcoming resistances
occurring anywhere in the system, and also of changing the
amount of kinetic energy of the moving masses, let us for
simplicity consider a machine the motions of whose parts are
all parallel to a plane, and let all the forces acting on any one
piece, considered free, at any instant be parallel to the same
plane.

Now consider each piece of the machine, or of any series of
its pieces, as a free body, and write out eq. (XV.) for it be-
tween any two positions (whatever initial and final positions are
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selected for the first piece, those of the others must be corre-
sponding initial and corresponding final positions), and it will
be found, on adding up corresponding members of these equa-
tions, that the terms involving those components of the mutual
pressures (between the pieces considered) which are normal
to the rubbing surfaces at any instant will cancel out, while
their components tangential to the rubbing surfaces (i.e., fric-
tion, since if the surfaces are perfectly smooth there can be
no tangential action) will appear in the algebraic addition as
resistances multiplied by the distances rubbed through, meas-
ured on the rubbing surfaces. For example, Fig. 155, where
one rotating piece both presses and rubs on another. Let the
normal pressure between them at 4 be B, = P,; it is a work-
ing force for the body of mass M”, but a resistance for M,
hence the separate symbols for the numerically equal forces
(action andsreaction).

Similarly, the friction at A is B, = P;; a resistance for M’,
a working-force for M. (In some cases, of course, friction
may be a resistance for both bodies.) For a small motion, 4
describes the small arc A4’ about O’ in dealing with M, but
for M it describes the arc AA” about O, A’A’" being
parallel to the surface of contact AD, while AB is perpen-

Fia. 157.

dicular to 4’4", In Figs. 156 and 157 we see M’ and M’
free, and their corresponding small rotations indicated. Daring
these motions the kinetic energy (K. E.) of each mass has
changed by amounts d(K. E.)sr and d(K. E.) respectively, and
hence eq. (X'V.) gives, for each free body in turn,

Pad — RAB— RAB=dXK.E)w . (1)
— RW' + P,AB+PA"B = dK.E)pp. . (2)



WORK, ENERGY, AND POWER. 149

Now add (1) and (2), member to member, remembering that
P, = R,and P, = R, = F, = friction, and we have

P,a?— F;.A'A" —R‘b_b'_' = d(K. E)yr + d(K. E.)uw, (3)

in which the mutual actions of M’ and M”" do not appear,
except the friction, the work done in overcoming which, when
the two bodies are thus considered collectively, is the product
of the friction by the distance A’A” of actual rubbing meas-
ured on the rubbing surface. For any number of pieces, then,
considered free collectively, the assertion made at the beginning
of this article is true, since any finite motion consists of an
infinite number of small motions to each one of which an equa-
tion like (8) is applicable.

Summing the corresponding terms of all such equations, we
have :

[ Pdu, + f" P du,+ ete. = S(K. E.).— Z(E.E).(XVL)

This is of the same form as (X'V.), but instead of applying to a
single rigid body, deals with any assemblage of rigid parts
forming a machine, or any part of a machine (a similar proof
will apply to three dimensions of space); but it must be remem-
bered that it excludes all the mutual actions of the pieces con-
sidered except friction, which is to be introduced in the manner
just illustrated. A flexible inextensible cord may be considered
as made up of a great number of short rigid bodies jointed
without friction, and hence may form part of a machine with-
ont vitiating the trath of (XVL.).

2(K. E.), signifies the sum obtained by adding the amounts
of kinetic energy (3d Mv,’ for each elementary mass) possessed
by all the particles of all the rigid bodies at their final posi-
tions ; 2(K. E.),, a similar sum at their initial positions. For
example, the K. E. of a rigid body having a motion of traunsla-
tion of velocity v, = #vlfd M = § M2"; that of a rigid body
having an angular velocity @ about a fixed axis Z, = }@'/;
(§139); while, if it has an angular velocity @ about a gravity-
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axis Z, which has a velocity vz of translation at right angles to
itself, the (K. E.) at this instant may be proved to be

Mvg + §' Ty,
i.e., is the sum of the amounts due to the two motions sepa-
rately.

143. K. E. of Combined Rotation and Translation.—The last
statement may be thus proved. Fig. 158.

op At a given instant the velocity of any dM is

2 v, the diagonal formed on the velocity vz of
* translation, and the rotary velocity wp rela-
e~ tively to the moving gravity-axis Z (per-
c x Pendicular to paper) (see §71),

2 ot ie., o' = 7'+ (wp)' — Aawp)vg cos P;
hence we have K. E,, at this instant,

= 1M = Yo A + o dUP — g fdMp cos P,
but p cos @ =y, and J/dMy = My = 0, since Z is a gravity-

axis,
S~ K E = 3Mv,) +30'l;, Q.E.D.

It is interesting to notice that the K. E. due to rotation, viz.,
4@’ Iy = $ M(wk)", is the same as if the whole mass were con-
centrated in a point, line, or thin shell, at a distance %, the
radius of gyration, from the axis.

144. Example of a Machine in Operation.—Fig. 159. Con-
sider the four consecutive moving masses, #’, M"', M’"’, and
M (being the piston; connecting-rod ; fly-wheel, crank, drum,
and chain; and weight on inclined plane) as free, collectively.
Let us apply eq. (XVL), the initial and final positions being
taken when the crank-pin is at its dead-points 0 and n; i.e., we
deal with the progress of the pieces made while the erank-pin
describes its upper semicircle. Remembering that the mutual
actions between any two of these four masses can be left out
of account (except friction), the only forces to be put in are
the actions of other bodies on each one of these four, and are

" e n—— ——eet e

L
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shown in the figure. The only mutual friction considered will
be at the crank-pin, and if this as an average == F"/, the work
done on it between o and n = F"'=r’/, where "/ = radius of
crank-pin. The work done by P, the effective steam-pressure
(let it be constant) during this period is = P,/’; that done in
overcoming ¥, the friction between piston and cylinder, = #}0';
that done upon the weight G" of connecting-rod is cancelled by
the work done by i in the descent following; the work done

Fia. 150,

upon @, = ('7a sin B, where a = radius of drum; thet
upon the friction #,, = F,wa. The pressures &N, N', N'", and

N, and weights G’ and G’”, are neutral, i.e., do no work either

positive or negative. Hence the left-hand member of (X'VI.)

becomes, between o and #n,

Pl —Fl —F'm"—G"masin p — Fra, . . (1)

provided the respective distances are actually described by
these forces, i.e., if the masses have sufficient initial kinetic
energy to carry the crank-pin beyond the point of minimum
velocity, with the aid of the working force P,, whose effect is
small up to that instant.

As for the total initial kinetic energy, i.e., Z(K. E.),, let us
express it in terms of the velocity of crank-pin at o, viz.,, V..
The (K.E.), of M’ is nothing ; that of M”’, which at this in-
stant is rotating about its right extremity ( fiwed for the instant)
with angular velocity @’ = V, + ", is §'"Lyp,"’; that of M’"
= 4" 1", in which @’ = V| = »; that of M'" (translation)
=3} Mo, in which v)" = (a + ) V,. Z(K.E.),is expressed
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in a corresponding manner with V, (final velocity of crank-pin)
instead of V,. Hence the right-hand member of (XVTI.) will
give (putting the radius of gyration of M"’ about 0" = &¥",

~ and that of M about C'=%)

CARE NP AN TS T

By writing (1)=(2), we have an equation of condition, capa-
ble of solution for any one unknown quantity, to be satisfied
for the extent of motion considered. 1t is understood that the
chain is always taut, and that its weight and mass are neg-
lected.

145. Numerical Case of the Foregoing.—(Foot-pound-second
systen of units for space, force, and time; this requires ¢
= 32.2.)

Suppose the following data :

FEET. Lsas. Lbs. Mass Unxirs.
i (and .".)

' =2.0 Px=0000 G = 60 M = 1.8
U =4.0 = 200 G = 50 M'= 1.55
a=1.5 F"(avge): 400 G'" = 400 M= 12.4
r=1.(8) F, = 800 G'v = 8220 My =100.0
k=1.
K =2.¥ Also let ¥, = 41t. persec.; 5=380°
Y =0,

Denote (1) by Wand the large bracket in (2) by M (this by
some is called the total mass “reduced” to the crank-pin).
Putting (1) = (2) we have, solving for the unknown V,,

‘) is
A \/"+V' e ®
For above values,

W = 12,000 — 400 — 125.7 — 7590.0 — 1417.3
= 2467 foot-pounds;

while # = 0.5 4 40.3 4 225.0 = 265.8 mass-units;

whence
V. = ¥18.56 416 = 4/34.56 = 5.88 ft. per second.
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As to whether the crank-pin actually reaches the dead-point
n, requires separate investigations to see whether ¥ Lecomes
zero or negative between o and n (a negative value is inad-
missible, since a reversal of direction implies a different
value for W), i.e., whether the proposed extent of motion is
realized ; and these are made by assigning some other inter-
mediate position =, as a final one, and computing V,,, remem-
bering that when m is not a dead-point the (K. E.),, of M’ is not
zero, and must be expressed in terms of ¥, and that the
(K. E.),, of the connecting-rod M’ must be obtained from § 143.

148. Regulation of Machines.—As already illustrated in
several examples (§121), a fly-wheel of sufficient weight and
radius may prevent too great fluctuation of speed in a single
stroke of an engine ; but to prevent a permanent change, which
must occur if the work of the working force or forces (such as
the steamn-pressure on a piston, or water-impulse in a turbine)
exceeds for several successive strokes or revolutions the work
required to overcome resistances (such as friction, gravity, re-
sistance at the teeth of saws, etc., etc.) through their respective
8paces, automatic governors are employed to diminish the
working force, or the distance through which it acts per stroke,
until the normal speed is restored ; or vice versd, if the speed
slackens, as when new resistances are temporarily brought into
play. Hence when several successive periods, strokes (or other
cycle), are considered, the kinetic energy of the moving parts
will disappear from eq. (XV1.), leaving it in this form:

work of working-forces = work done upon resistances.

147. Power of Motors.—In a mill where the same number of
machines are run continuously at a constant speed proper for
their work, turning out per hour the same number of barrels
of flour, feet of lumber, or other commodity, the motor (e.g.,
4 steam-engine, or turbine) works at a constant rate, i.e., de-
velope a definite horse-power (H.P.), which is thus found in
the case of steam-engines (double-acting) :
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steam-pressure on travelled by pis-

H.P. = total mean effective distance in feet
} X { }+ 550,
piston in lbs. ton per second.

i.e., the work (in ft.-lbs) done per second by the working force
divided by 550 (see § 132). The total effective pressure at any
instant is the excess of the forward over the back-pressure,
and by its mean value (since steam is usually used expansively)
is meant such a value ' as, multiplied by the length of stroke
1, shall give :

Pl =[Pdar,

where P is the variable effective pressure and dz an element
of its path. If w is the number of strokes per second, we may
also write (foot-pound- second system)

H.P.= P'lu + 550 = I:'/JPdw]u =+ 550. (XVIL)

Very often the number of revolutions per minute, m, of the
crank is given, and then

H.P. = P’ (Ibs)) X 20 (feet) X m = 33,000.

If F = area of piston we may also write P’ = Fp’, where p’
is the mean effective steam-pressure per unit of area. Evi-
dently, to obtain 2’ in lbs., we multiply F in sq. in. by p’ in
lbs. per sq. in., or F in sq. ft. by p’ in lbs. per sq. foot ; the
former is customary. p’in practice is obtained by measure-
ments and computations from ¢ indicator-cards” (see § 135, in
which (P, — R,) corresponds to P of this section) ; or /7', i.e.,

f Pdz, may be computed theoretically as in § 59, Problem 4.

The power as thus found is expended in overcoming the
friction of all moving parts (which is sometimes a large item),
- and the resistances peculiar to the kind of work done by the ma-
chines. The work periodically stored in the increased kinetic
energy of the moving masses is restored as they periodically
resume their minimum velocities.
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148. Potential Energy.—There are other ways in which work
or energy is stored and then restored, as follows:

First. In raising a weight & through a height A, an amount
of work = G% is done upon G, as a resistance, and if at any
subsequent time the weight is allowed to descend through the
same vertical distance A (the form of path is of no account), @,
now a working force, does the work Gk, and thus in aiding the
motor repays, or restores, the G4 expended by the motor in
raising it. If A is the vertical height through which the centre
of gravity rises and sinks periodically in the motion of the
machine, the force G may be left out of account in reckoning
the expenditure of the motor’s work, and the body when at its
highest point is said to possess an amount G4 of potential
energy, i.e., energy of position, since it is capable of doing the
work Gk in sinking through its vertical range of motion.

Second. So far, all bodies considered have been by express
stipulation 7:gid, i.e., incapable of changing shape. To see
the effect of a lack of rigidity as affecting the principle of
work and energy in machines, A
take the simple case in Fig. 160. ©
A helical spring at a given in-
stant is acted on at each end by
a force P in an axial direction
(they are equal, supposing the Fia. 160.
mass of the spring small). As the machine operates of which
it is a member, it moves to a new consecutive position B,
suffering a further elongation dA in its length (if 2 is increas-
ing). P on the right,a working force, does the work Pda’;
how is this expended? P on the left has the work Pdz done
upon it, and the mass is too small to absorb kinetic energy or
to bring its weight into consideration. The remainder, Pda’
~ Pda = Pd), is expended in stretching the spring an addi-
tional amount dA, and is capable of restoration if the spring
retains its elasticity. Hence the work done in changing the
form of bodies if they are elastic is said to be stored in the
form of potential energy. That is, in the operation of ma-
chines, the name potential energy is also given to the energy

]
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stored and restored periodically in the changing and regaining
of form of elastic bodies.

149. Other Forms of Energy.—Numerous experiments with
various kinds of apparatus have proved that for every 772
(about) ft.-1bs. of work spent in overcoming friction, one British
unit of heat is produced (viz., the quantity of heat necessary to
raise the temperature of one pound of water from 32° to 33°
Falirenheit); while from converse experiments, in which the
amount of heat nsed in operating a steam-engine wasall carefully
estimated, the disappearance of a certain portion of it could only
be accounted for by assuming that it had been converted into
work at the same rate of (about) 772 ft.-lbs. of work to each
unit of heat (or 425 kilogrammetres to each French unit of
heat). This number 772, or 425, according to the system of
units employed, is called the Mechanical Eyuivalent of Heat,
first discovered by Jounle and confirmed by Hirn.*

Heat then is energy, and is supposed to be of the kinetic
form due to the rapid motion or vibration of the molecules of
a substance. A similar agitation among the molecules of the
{hypothetical) ether diffused through space is supposed to pro-
duce the phenomena of light, electricity, and magnetism.
Chemical action being also considered a method of transform-
ing energy (its possible future occurrence as in the case of coal
and oxygen being called potential energy), the well-known
doctrine of the Conservation of Energy, in accordance with
which energy is indestructible, and the doing of work is simply
the conversion of one or more kinds of energy into equivalent
amounts of others, is now one of the accepted hypotheses of
physics.

Work consumed in friction, though practically lost, still re-
mains in the universe as heat, electricity, or some other subtile
form of energy.

150. Power Required for Individual Machines. Dynamome-
ters of Transmission.—If a machine is driven by an endless
delt from the main-shaft, 4, Fig. 161, being the driving-pulley

* Prof. Rowland's recent experiments result in the value 429.8 kilogram-
metres at a temaperature of 5° Cent.
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on the machine, the working force which drives the machine,
in other words the * grip” with which the »

belt takes hold of the pulley tangentially, P
=P — P, P and P’ being the tensions
in the “driving” and ¢ following” sides of
the belt respectively. The belt is supposed |
not to slip on the pulley. If v is the ve- EN ’
locity of the pulley-circumference, the Fia. 161.
work expended on the machine per second, i.e., the power, is

=P—=Pw. . . .... @1

To measure the force (P — P’), an apparatus called a Dy-
namometer of Transmission may be placed between the main
shaft and the machine, and the belt made to pass through it in
such a way as to measure the tensions P and P’, or princi-
pally their difference, without meeting any resistance in so do-
ing; that is, the power is ¢ransmitted, not absorbed, by the
apparatus. One invention for this purpose (mentioned in the
Journal of the Franklin Institute some years ago) is shown
(¢n principle) in Fig. 162. A ver-
: /P' tical plate carrying four pulleys and

a scale-pan is first balanced on the
pr pivot C. The belt being then ad-
justed, as shown, and the power
turned on, a sufficient weight G is
placed in the scale-pan to balance

Fro. 163, the plate again, for whose equilib-
rium we must have Gb = Pa — P’a, since the P and P’ on
the right are purposely given no leverage about €. The ve-
locity of belt, », is obtained by a simple counting device.
Hence (P — P’) and » become known, and .*. Z from (1).

Many other forms of transmission-dynamometers are in use,
some applicable whether the machine is driven by belting or
gearing from the main shaft. Emerson’s Hydrodynamics de-
scribes his own invention on p. 283, and gives results of meas-
urements with it; e.g., at Lowell, Mass., the power required
to drive 112 looms, weaving 36-inch sheetings, No. 20 yarn.

‘f!
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. 60 threads to the inch, speed 130 picks to the minute, was
found to be 16 H.P., i.e., } H.P. to each loom (p. 335).

151. Dynamometers of Absorption.—These are so named
since they furnish in themselves the resistance (friction or a
weight) in the overcoming (or raising) of which the power is
expended or absorbed. Of these the Prony Friction Brake
is the most common, and is used for measuring the power
developed by a given motor (e.g., a steam-engine or turbine)
not absorbed in the friction of the motor itself. Fig. 163

Fia. 163.

shows one fitted to a vertical pulley driven by the motor. By
tightening the bolt B, the velocity v of pulley-rim may be
made constant at any desired value (within' certain limits) by
the consequent friction. v is measured by a counting appara-
tus, while the friction (or tangential components of action be-
tween pulley and brake), = Z, becomes known by noting the
weight G which must be placed in the scale-pan to balance the
arm between the checks ; then

Fa=6Gb, . . . . . .. (1)

for the equilibrium of the brake (supposing the weight of
brake and scale-pan previously balanced on C) and the work
done per unit of time, or power, is

L=F. . . . . .. . (92

A “dash-pot ” is frequently connected with the arm to prevent
sudden oscillations. In case the pulley is horizontal, a bell-
crank lever is added between the arm and the scale-pan, and
then eq. (1) will contain two additional lever-arms.
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152. The Indicator, used with steam and other fluid engines,
is a special kind of dynaraometer in which the automatic mo-

tion of a pencil describes a curve ¢zt

on paper whose ordinates are r‘ \"q\%
proportional to the fluid pres- e
sures exerted in the cylinder at B{ Rl %| Rl Rl p
successive points of the stroke. R
Thus, Fig. 164, the back-pres- iP, remo une X

sure being constant and = P, Fio. 164,

the ordinates P,, P,, etc., represent the effective pressures at
equally spaced points of division. The mean effective pressure
P’ (see §147) is, for this figure, by Simpson’s Rule (six equal
spaces),

= 25[P.+ 4P, + P, + P)+ %P, + P) + P).

This gives a near approximation. The power is now found by
§ 147.

153. The theory of Atwood’'s Machine is most directly ex-
pressed by the principle of work and energy; ie.,, by eq.
(XVL), §142. Fig. 165. The parts
considered free, collectively, are the
rigid bodies P, @, &, and four friction-
wheels like @G,; and the flexible cord,
which does not slip on the upper pul-
ley. There is no slipping at D, hence
no sliding friction there. The actions
of external bodies on these eight consist
of the working force P, the resistances
@ and the four #”s (at bearings of fric-

Fro. 165, tion-wheel axles); all others (&, 4G,
and the four R’s)are neutral. Since there is no rubbing be-
tween any two of the eight bodies, no mutual actions whatever
will enter the equation. Let P > @, and 7 and 7, be the mo-
ments of inertia of & and @,, respectively, about their respec-
tive axes of figure. Let the apparatus start from rest, then
when P has descended through any vertical distance s, and ac-
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quired the velocity v, @ has been drawn up an equal distance
and acquired the same velocity, while the pulley G has ac-
quired an angular velocity @ = v - @, each friction-pulley an
angular velocity @, =(r : ajv + a,. As to the forces, P has
done the work Ps, @ has had the work Qs done upon it, while
each # has been overcome through the space (7, : a X : a)s;
all the other forces are neutral. Hence, from eq. (XVL.), § 142
(see also § 139), we have

Ps-Qo-ufﬁ'.is

,vt 2 3 -
[P Q] +3alt5 g Gl —O.
Evidently v = #3 X constant, i.e., the motion of P and @ is
uniformly accelerated. If, after the observed space ¢ has been
described, P is suddenly diminished to such a value P’ that
the motion continues with a constant velocity = v, we shall
have, for any further space &',

ror
Pg — Qs — 4F;‘ . 58' =0,
1

from which # can be obtained (nearly); while if # be the ob-
served time of describing &, » = &' + ¢ becomes known.
Also we may write /= (G + g)k' and 1, = (G, + g)k,’, and
thus finally compute the acceleration of gravity, g, from our
first equation above.

154. Boat-Rowing.—.fig. 166. During the stroke proper,
let 2 = mean pressure on one oar-handle ; hence the pressures
on the foot-rest are 2P, resistances. Let M = mass of boat
and load, v, and v, its velocities at beginning and end of stroke.
P, = pressures between oar-blade and water. & = mean re-
sistance of water to the boat’s passage at this (mean) speed.
These are the ouly (horizontal) forces to by considered as act-
ing on the boat and two oars, considered ifree collectively.
During the stroke the boat describes the spgce &, = CD, the
oar-handle the space s, = AB, while the oar-bjade slips back-
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ward through the small space (the “slip”) = s, (average).
Hence by eq. (XV1.), § 142,

9Ps, —2Ps, — Rs, — 2Ps, =3 M0, — v,");
ie,2P(s,—8,)=2P X AE=2Ps = Rs,+-2P s+ $ M(v,'—,");
or, in words, the product of the oar-handle pressures into the
distance described by them measured on the boat,i.e., the work

done by these pressures relatively to the boat, is entne]y ac-
* counted for in the work of slip and of liquid-resistance, and in-

Fia. 166.

creasing the kinetic energy of the mass. (The useless work
due to slip is inevitable in all paddle or screw propulsion, as
well as a certain amount lost in machine-friction, not considered
in the present problem.) During the recovel” the velocity
decreases again to v,.

156. Examples.—1. What work is done on a level track, in
bringing up the velocity of a train weighing 200 tons, from
zero to 30 miles per hour, if the total frictional resistance (at
any velocity, say) is 10 lbs. per ton, and if the change of speed
is accomplished in a length of 3000 feet ¢

(#oot-ton-second system.) 30 miles per hour = 44 ft. per
sec. The mass

= 200 = 32.2 = 6.2;
.. the change in kinetic energy,
(=M — M X 0%,
= $(6.2) X 44' = 6001.6 ft.-tons.
11
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The work done in overcoming friction = F3, i.e.,

=200 X 10 X 3000 = 6,000,000 ft.-lbs. = 3000 ft.-tomns ;
.~ total work = 6001.6 -}- 3000 = 9001.6 ft.-tons.

(If the track were an up-grade, 1 in 100 say, the item of
200 X 30 = 6000 ft.-tons would be added.)

Erample 2.—Required the rate of work, or power, in Ex-
ample 1. The power is variable, depending on the velocity of
the train at any instant. Assume the motion to be uniformly
accelerated, then the working force is constant; call it 2.
The acceleration (§ 56) will be p=2"-28=1936--6000=0.322
ft. per sq. sec.; and since 2 — F = Mp, we have

P =1 ton + (200 =+ 32.2) X 0.322 = 3 tons,

which is 6000 <+ 200 = 30 lbs. per ton of train, of which 20 is
due to its inertia, since when the speed becomes uniform the
work of the engine is expended on friction alone.

Hence when the velocity is 44 ft. per sec., the engine is
working at the rate of Pv = 264,000 ft.-1bs. per sec., i.e., at the
rate of 480 H. P;

At  of 3000 ft. from the start, at the rate of 240 H. P., half
as much ;

At a uniform speed of 30 miles an hour the power would be
simply 1 X 44 = 44 ft.-tons per sec. = 160 H. P.

Example 3.—The resistance offered by still water to the
passage of a certain steamer at 10 knots an hour is 15,000 lbs.
‘What power must be developed by its engines, at this uniform
speed, considering no loss in “slip” nor in friction of ma-
chinery ¢ Ans. 461 H. P.

Example 4.—Same as 8, except that the speed is to be 15
knots (i.e., nautical miles ; each = 6086 feet) an hour, assum-
ing that the resistances are as the square of the speed (approxi-
mately true). Ans. 1556 H. P.

Example 5.—Same as 3, except that 12% of the power is ab-
sorbed in the “slip” (i.e., in pushing aside and backwards the
water acted on by the screw or paddle), and 8% in friction of
machinery. Ans. 576 H. P,

Example 6.—In Example 3, if the crank-shaft makes 60
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revolutions per minute, the crank-pin describing a circle of 18
inches radius, required the average* value of the tangential
component of the thrust (or pull) of the connecting-rod against
the crank-pin. Ans. 26890 lbs,

Ezample T.—A solid sphere of cast-iron is 7olling up an in-
cline of 30° and at a certain instant its centre has a velocity of
36 inches per second. Neglecting friction of all kinds, how
much forther will the ball mount the incline (see § 143) %

) Ans. 0.390 ft.

Example 8.—In Fig. 163, with b = 4 ft. and a = 16 inches,
it is found in oneexperiment that the friction which keeps the
speed of the pulléy at 120 revolutions per minute is balanced
by a weight @ = 1601bs. Required the power thus measured.

Ans. 14.6 H. P.

Although in Examples 1 to 6 the steam cylinder is itself in
motion, the work per stroke is still = mean effective steam-
pressure on piston X length of stroke, for this is the final form
to which the separate amounts of work done by, or upon, the
two cylinder heads and the two sides of the piston will re-
duce, when added algebraically. See §154. - -

* By *‘average value” is meant such a value, T}, as multiplied into the

length of path described by the crank-pin per unit of time shall give the
power exerted.
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CHAPTER VIL
FRICTION. .

156. Sliding Friction.—When the surfaces of eontact of two
bodies are perfectly smooth, the direction of the pressure or pair
of forces between them is normal to these surfaces, i.e., to their
tangent-plane ; but when they are rough, and

\"~e~\"'3m moving one on the other, the forces or ac-
RN tions between them incline away from the
N\ _;1_& normal, each on the side opposite to the di-

DS L iR rection of the (relative) motion of the body
@4 on whieh it acts. Thus, Fig. 167, a block

Fro. 167. whose weight is @, is drawn on a rough
horizontal table by a horizontal cord, the tension in which is
P. On account of the roughness of one or both bodies the ac-
tion of the table upon the block is a force P,, inclined to the
normal (which is vertical in this case) at an angle = @ away
from the direction of the relative velocity v. This angle @ is
called the angle of friction, while the tangential component of
P, is called the friction = F. The normal component X,
which in this case is equal and opposite to & the weight of the
body, is called the normal pressure.

Obviously 7 = X tan ¢, and denoting tan @ by f, we have

F=fN. . ... ... Q@

S is called the cogfficient of friction, and may also be defined

as the ratio of the friction F to the normal pressure ¥ which
produces it.
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."In Fig. 167, if the motion is accelerated (ace. = p), we have
(eq. IV.),§55) P — F = Mp; if uniform, P — F=0; from
which equations (see also (1))f may be computed. In the
latter case /" inay be found to-be different with different veloci-
ties (the surfaces retaining the same character of course), and
then a uniformly accelerated motion is impossible unless P
" — F were constant.

As for the lower block or table, forces the equals and op-
posites of IV and F(or a single force equal and opposite to 2,)
are comprised in the system of forces acting upon it.

As to whether F is a working force or a resistance, when
either of the two bodies is considered free, depends on the cir-
cumstances of its motion. For example, in friction-gearing
the tangential action between the two pulleys is a resistance
for one, a working force for the other.

If the force P, Fig. 167, is just sufficient to start the body,
or is just on the point of starting it (this will be called impending
motion), I is called the friction of rest. 1f the body is at rest
and P is not sufficient to start it, the tangential component will
then be < the friction of rest, viz., just = P. As P increases,
this component continually equals it in value, and P, acqnires
a direction more and more inclined from the normal, until the
instant of impending motion, when the tangential component
=fN =the friction of rest. When motion is once in prog-
ress, the friction, called then the friction of motion, = fN,
in which £ is not necessarily the same as in the friction of rest.

157. Laws of Sliding Friction.—Experiment has demon-
strated the following relations approximately, for two given
rubbing surfaces: (Sece §175.)

(1) The coefficient, f, is independent of the normal pressure

(2) The coefficient, f, for friction of motion, is the same at
all velocities.

(8) The coefficient, f, for friction of rest (i.e., impending
motion) is usually greater than that for friction of motion
(probably on account of adhesion).
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(4) The coefficient, £, is independent of the extent of rub-
bing surface. .

(5) The interposition of an unguent (such as oil, lard, tallow,
etc.) diminishes the friction very considerably.

158. Experiments on Sliding Friction.—These may be made
with simple apparatus. If a block of weight = @, Fig. 168,
be placed on an inclined plane of uniformly rough surface,
and the latter be gradmally more and more inclined from the
horizontal until the block degins to move, the value of £ at

. . Ya B.

Fre. 168, - Fia. 169,

this instant = @, and tan @ = f = coefficient of friction of
rest. For from ZX = 0 we have % i.e., fV, = G sin §;
from Z2¥ =0, N = @ cos §; whence tan = f, .. # must
Suppose £ so great that the motion is accelerated, the body
starting from rest at o, Fig. 169. It will be found that the
distance @ varies as the square of the time, hence (§ 56) the
motion is uniformly accelerated (along the axis X). (Notice
in the figure that & is no longer equnal and opposite to P,, the
resultant of &V and 7% as in Fig. 168.)

=Y =0, whichgives ¥ — G cosf=0;
3X = Mp, which gives @sin f— fN = (G +g)p;
while (from § 56) =2+

Hence, by elimination, z and the corresponding time ¢ having
been observed, we have for the coefficient of friction of motion

22
gt' cos 8

JS=tan g —
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In view of (8), § 157, it is evident that if a value §,, has been
found experimentally for 8 such that the block, once started by
hand, preserves a uniform motion down the plane, then, since
tan B, =f for friction of motion, 8, may be less than the g
in Fig. 168, for friction of rest.

159. Another apparatus consists of a horizontal plane, a pul-
ley, cord, and two weights, as shown in Fig. 59. The masses
of the cord and pulley being small and hence neglected, the
analysis of the problem when (7 is so large as to cause an ac-
celerated motion is the same as in that example [(2) in § 57],
except in Fig. 60, where the frictional resistance /V should be
put in pointing toward the left. ¥ still = &, and .~

S§—fG =G +gp; - «. . . . @)
while for the other free body in Fig. 61 we have, as before,
G-8=CG+gp.. . . . . . (2

From (1) and (2), S the cord-tension can be eliminated, and
solving for p, writing it equal to 23 + ¢*, ¢ and ¢ being the ob-
served distance described (from rest) and corresponding time,
we have finally for friction of motion

f=€,-——a:—.;-f.. oe e e (3)

If @, Fig. 59, is made just sufficient to start the block, or
sledge, @,, we have for the friction of rest

f=%.........(4)

160. Results of Experiments on Sliding Frietion.—Professor
Thurston in his article on Friction (which the student will do
well to read) in Johnson’s Cyclopedia gives the following
epitome of results from General Morin’s experiments (made
for the French Government in 1833):
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TABLE FOR FRICTION OF MOTION.

No. Surfaces. Unguent. Angle ¢. J=tan ¢
1 ‘Wood on wood. None. 14° to 264° | 0.25 to 0.50
23 ‘Wood on wood. Soap. 2° to114° | 0.04 to 0.20
8 Metal on wood. None. 264° to 814° | 0.50 to 0.60
4 Metal on wood. ‘Water. 15° to 20° 0.256 10 0.85
5 Metal on wood. Soap. 114° 0.20
(] Leather on metal. Noune. 20¢° 0.56
7 Leather on metal. Greased. 18° 0.28
8 Leather on metal. Water. 20° 0.36
9 Leather on metal. Oil. 8§° 0.15

10 | Smootbest and best .

lubricated surfaces. {.....ccovue.. 13°to 2° 0.03 to 0.036

For friction of rest, about 40% may be added to the coeffi-
cients in the above table.

In dealing with the stone blocks of an arch.ring, @ is com-
monly taken = 30° i.e., f = tan 30° = 0.58 as a low safe
value; it is considered that if the direction of pressure between
two stones makes an angle > 80° with the normal to the joint
(see § 161) slipping may take place (the adhesion of cement
being neglected).

General Morin states that for a sledge on dry ground /' =
about 0.66.

Weisbach gives for metal on metal, dry (R.R. brakes for
example), ' = from 0.15 to 0.24. Trautwine’s Pocket-Book
gives values of f for numerous cases of friction.

161. Cone of Friction. —Fig 170. Let A and B be two
rough blocks, of which B is immovable, and P the resultant
of all the forces acting on 4, except the pres-
sure from B. B can furnish any required
normal pressure IV to balance P cos 8, but
the limit of its tangential resistance is fV.
So long then as £ is < @ the angle of fric-
| tion, or in other words, so long as the line of

Fia. 170, action of P iswithin the “ cone of friction”"
generated by revolving OC about ON, the block 4 will not

IN
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slip on B, and the tangential resistance of B is simply P sin
p; but if B is > @, this tangential resistance being only /¥
and < P sin B, A will begin to slip, with an acceleration.

162. Problems in Sliding Friction.—In the following prob-
lems f is supposed known at points where rubbing occurs, or
is impending. As to the pressure & to which the friction is
due, it is generally to be considered unknown until determined
by the conditions of the problem. Sometimes it may be an
advantage to deal with the single unknown force P (resultant
of NV and fN ) acting in a line making the known angle ¢ with
the normal (on the side away from the motion).

ProsLeM 1.—Required the value of the weight P, Fig. 171,
the slightest addition to which will cause motion of the hori-
zontal rod OB, resting on rough planes at 45°. The weight
@ of the rod may be applied at the
middle. Consider the rod free; at
each point of contact there is an un-
known X and a friction due to it
JV; the tension in the cord will be
= P, since there is no acceleration
and no frietion at pulley. Notice Fra. 171.
the direction of the frictions, both opposing the impending
motion. [The student should not rush to the conclusion that
AV and NV, are equal, and are the same as would be produced by
the components of @ if the latter were transferred to 4 and
resolved along A0 and A B ; but should await the legitimate
results deduced by algebra, from the equations of condition
for the equilibrium of a systemn of forcesin a plane. Few
problems in Mechanics are so simple as to admit of an imme-
diate mental solution on inspection ; and guess-work should be
carefully avoided.]

Taking an origin and two axes as in figure, we have (egs.
(2), § 36), denoting the sine of 45° by m,

2X.... fN4+mG@—-N—-P=0;. . (1
ZY.... N +fN-—- m@G =0;. . (2
Z2(Pa)....fNa+ Na — Ghb=0.. . (3)
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The three unknowns P, %, and N, can now be found.
Divide (3) by @, remembering that 4 : @ = m, and solve for
V; substitate it in (2) and &V, also becomes known; while P
is then found from (1) and is

omf@ _ V2
1+f- 147

ProeLEM 2.—Fig. 172. A rod, centre of gravity at middle,
leans against a rough wall, and rests on an equally rough floor;
, how small may the angle « become before it
7 olips? Let a = the half-length. The figure
/l// shows the rod free, and following the sugges-
tion of §162, a single unknown force P,
making a known angle @ (whose tan = f)
with the normal DE; is put in at D), leaning
_ away from the direction of the impending
Ty, motion, instead of an N and fV; similarly

Fia. 172, P, acts at C. The present system consisting
of but three forces, the most direct method of finding a, with-
out introducing the other two unknowns P, and P, at all, is
to use the principle that if three.forces balance, their lines
of action must intersect in a point. That is, P, must inter-
sect the vertical containing @, the weight, in the same point
as P, viz., A.

Now EA, and also BC, = a cos a,

SWED=acsacotp and AB=acosatan ¢.
But DF, which = 2a sin @y, = DE— AB;
.2 sina=acosafcot @ —tan@]. . . (1)

Dividing by cos @, and noting that tan @ = f =1 =+ cot @,
we obtain for the required value of «

P = G

tma:%.l._ff; and finally, tan a = cot 24,
after some trigonometrical reduction. That is, & is the com-
plement of double the angle of friction.
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ProsLeEM 3.—Fig. 178. Given the resistance @, acting
parallel to the fixed guide C, the angle , and the (equal) co:
efficients of friction at the rubbing surfaces, required the

Q B.

Fia. 173, Fia. 174.

amount of the horizontal force P, at the head of the block A

(or wedge), to overcome ¢ and the frictions. D is fixed, and
ab is perpendicular to ¢d. Here we have four unknowns, viz.,

P, and the three pressures &V, IV,, and V,, between the blocks.

Consider 4 and B as free bodies, separately (see Fig. 174), re-

membering Newton’s law of action and reaction. The full

values (e.g., fV) of the frictions are put in, since we suppose

a slow uniform motion taking place.

For A, ZX=0and 2Y =0 give

N, —Ncosa+fNsina— Psina=0;. . (1)
SN, 4+ Nsina +fNcosa—Pecosa=0 . . (2
For B, 3X and 2 Y give
Q—N.+fN,=0;5....(3) and N,—fN,=0....(4)
Solve (4) for &, and substitute in (3), whence
NA-fH=¢@ . . . . . . (5

Solve (2) for IV, substitute the resunlt in (1), as also the value
of NV, from (5),and the resulting equation contains but one un-
known, P. Solving for P, putting for brevity

Jeosat-sina=m and cos a —fsina=n,

L mt @ .
we have P=(n.cosa+m.sina)(1——f’)' RO

or P=@Qm+my+=1-s" . . . . (O
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Numerical Example of Problem 3.—If Q =120 lbs., f
= 0.20 (an abstract number, and .. the same in any system of
wunitts), while a = 14°, whose sine = 0.240 and cosine = .970,
then

m=02X.974+024 =043 and n=.97 —.2X.24 = 0.92,
whence P = 0.64¢Q = 76.8 1bs.

‘While the wedge moves 2 inches P does the work (or exerts
an energy) of 2 X 76.80 = 153.6 in.-lbs. = 12.8 ft.-lbs.

For a distance of 2 inches described by the wedge horizon-
tally, the block B (and .-. the resistance @) has been moved
through a distance = 2 X sin 14° = 0.48 in. along the guide
C, and hence the work of 120 X 0.48 = 57.6 in.-lbs. has been
done upon ¢. Therefore for the supposed portion of the
motion 153.6 — 57.6 = 96.0 in.-lbs. of work has been lost in
friction (converted into heat).

It is noticeable in eq. (8), that if f should = 1.00, P = o
and that if @ = 90°, P = ¢, and there is no friction (the
weights of the blocks have been neglected).

ProBLEM 4. Numerical.—With what minimum pressure
P should the pulley A be held against B, which it drives by

5 [1 = [a frictional gearing,” to transmit 2 H.P.;
i JC ) if a@ = 45°, f for impending (relatlve)
[ _ motion, i.e., for impending slipping =
Fro. 175. 0.40, and the velocity of the pulley-rim
is 9 ft. per second {
The limit-valne of the tangential ¢ grip”

T'=  2N=2 X 040 X P sin 45°,
2 H.P. =2 X 550 = 1100 ft.-1bs. per second.
Putting 7" X 9 ft. = 1100, we have

2% 040 X ¥ X P X9=1100; .. P = 215 Ibs.

ProBLEM 6.—A block of weight G lies on a rough plane,
inclined an angle £ from the horizontal ; find the pull 2, mak-
ing an angle a with the first plane, which will maintain a uni-
form motion up the plane.
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ProBLEM T.~Same as 6, except that the pull P is to permit
a uniform motion down the plane.

ProBLEM 8.—The thrust of a screw-propeller is 15 tons.
The ring against which it is exerted has a mean radius of 8
inches, the shaft makes one revolution persecond, and # = 0.06.
Required the H. P. lost in friction from this cause.

Ans. 13.7 H. P,

163. The Bent-Lever with Friction. Worn Bearing.—Fig.
176. Neglect the weight of the lever, and suppose the plumb-
er-block so worn that there is
contact along one element only of
the shaft. Given the amount and
line of action of the resistance R,
and the line of action of P, re-
quired the amount of the latter for
impendingslipping in the direction
of the dotted arrow. As P grad-
ually increases, the shaft of the
lever (or gear-wheel) rolls on its Fra, 178,
bearing until the line of contact has reached some position 4,
when rolling ceases and slipping begins. To find 4, and the
value of P, note that the total actiori of the bearing upon the
lever is some force P, applied at A aud making a known
angle @ (f = tan @) with the normal AC. P, must be equal
and opposite to the resultant of the known 2 and the unknown
P, and hence graphically (a graphic is much simpler here than
an analytjcal solution) if we describe about C a circle of radius
= 7 sin @, 7 being the radius of shaft (or gudgeon), and draw
a tangent to it from ), we determine DA as the line of action
of P. If D@ is made = R, to scale, and GF drawn parallel
to D... P, P is determined, being = DE, while P, = DF.

If the known force R is capable of acting as a working force,
by drawing the other tangent DB from D to the “friction-
circle,” we have P = DH, and P, = DK, for impending
rotation in an epposite direction.

If R and P are the tooth-pressures upon two spur-wheels.
keyed upon the same shaft and nearly in the same plane, the
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éame constructions hold good, and for a continuous uniform
motion, since the friction = P, sin @,
the work lost in .friction } = [P,sin @]2r.
per revolation,

It is to be remarked, that without friction P, would pass
through C, and that the moments of & and P would balance
about C (for rest or uniform rotation); whereas with friction
they balance about the proper tangent-point of the friction-
circle.

- Another way of stating this is as follows: So long as the
resultant of P and R falls within the dead-angle” BDA,
motion is impossible in either direction.

If the weight of the lever is considered, the resultant.of it
and the force & can be substituted for the latter in the fore-

going.

164. Bent-Lever with Friction. Triangular Bearing.—Like
the preceding, the gudgeon is much exaggerated in the figure
(177). For impending rotation in
direction of the force P, the total
actions at 4, and A, must lie in
known directions, making angles = @
with the respective normals, and in-
clined away from the slipping. Join
the intersections 2 and L. Since
the resultant of P and & at D must
act along DL to balance that of P,
and P,, having given one force, say

Fie. 177. R, we easily find P = DE, while
P, and P, = LM and LN respectively, LO having been made
= DF; and the parallelogram completed.

(If the direction of impending rotation is reversed, the change
in the construction is obvious.) If P, =0, the case reduces
to that in Fig. 176 ; if the construction gives P, negative, the
supposed contact at A4, is not realized, and the angle 4,04,
should be increased, or shlfbed until P, is positive.

As before, P and R may be the tooth-pressures on two
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spur-wheels nearly in the same plane aud on the same shaft;
if 8o, then, for a uniform rotation, ‘

‘Work lost in fric. per revol. = [P, sin @ 4 P, sin @]27=r.

165. Axle-Friction.—The two foregoing articles are intro-
ductory to the snbject of axle-friction. When the bearing is
new, or nearly so, the elements of the axle which are in contact
with the bearing are infinite in number, thus giving an infinite
number of unknown forces similar to P, and P, of the last
paragraph, each making an angle @ with its normal. Refined
theories as to the law of distribution of these pressures are of
little use, considering the uncertainties as to the value of
J'( = tan 9); hence for practical purposes axle-friction may be
written

F=7R,
in which f is a cogfficient of axlefriction derivable from
experiments with axles, and & the resultant pressure on the
bearing. In some cases /2 may be partly due to the tightness
of the bolts with which the cap of the bearing is fastened.

As before, the work lost in overcoming axle-friction per
revolution is = f' R2xr, in which » is the radius of the axle.
J like f, is an abstract number. As in Fig. 176, a * friction-
circle,” of radius = f'r, may be considered as subtending the
“dead-angle.”

166. Experiments with Axle-Friction.—Prominent among
recent experiments have been those ’
of Professor Thurston (1872-73),
who invented a special instrument
for that purpose, shown (in princi-
ple only) in Fig. 178. By means of
an internal spring, the amount of
whose compression is read on a scale, <
a weighted bar or pendulum is caused
to exert pressure on a projecting axle
from which it is suspended. The
axle is made to rotate at any desired Fia. 178.
+ velocity by some source of power, the axle-friction causing
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the pendulum to remain at rest at some angle of deviation
from the vertical. The figure shows the pendulum free, the
action of gravity upon it being @, that of the axle consisting
of the two pressures, each = &, and of the two frictions (each
being F' = f'R), due to them. Taking moments about C, we
have for equilibrinm

9f Rr = Gb,

in which all the quantities except f” are known or observed.
The temperature of the bearing is also noted, with reference
to its effect on the lubricant employed. Thus the instrument
covers a wide range of relations.

General Morin’s experiments as interpreted by Weisbach
give the following practical results:

0.054 for well-sustained
For iron axles, in ironor | lubrication ;
brass bearings fr= 0.07 to .08 for ordinary
labrication.

By “pressure per square inch on the bearing” is commonly
meant the quotient of the total pressure in Ibs. by the area in
square tnches obtained by multiplying the width of the axle by
the length of bearing (this length is quite commonly four times
the diameter) ; call it p, and the velocity of rubbing in feet per
minute, v. Then, according to Rankine, to prevent overheat-
ing, we should have

(v -+ 20) < 44800 . . . (not homog.).

Still, in marine-engine bearings pv alone often reaches 60,000,
as also in some locomotives (Cotterill). Good practice keeps
p within the limit of 800 (lbs. per sq. in.) for other metals
than steel (Thurston), for which 1200 is sometimes allowed.

With v = 200 (feet per min.) Professor Thurston found that
for ordinary lubricants p should not exceed values ranging
from 30 to 75 (lbs. per sq. in.).

The product pv is obviously proportional to the power ex-
pended in wearing the rubbing surfaces, per unit of area.
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167. Friction-Wheels.—A single example of their use will
be given, with some approximations to avoid complexity. Fig.
179. @ is the weight of a heavy wheel, P, is a known vertical
resistance (tooth-pressure), and 7 an
unknown vertical working force,
whose value is to be determined to
maintain a uniform rotation. The
utility of the friction-wheels is also
to be shown. The resultant of P,,
@, and P is a vertical force &, pass-
ing nearly throngh the centre C of
the main axle which rolls on the four
friction-wheels. R, resolved along ~8....
CA and CB, produces (nearly) equal Fio. 10,
pressures, each being NV = R <+ 2 cos a, at the two axles of
the friction-wheels, which rub against their fixed plumber-
blocks. R = P + P, + G,, and .". contains the unknown P,
but approximately = & + 2P, i.e., is nearly the same (in this
case) whether friction-wheels are employed or not.

When @ makes one revolution, the friction /"V at each axle
C, is overcome through a distance = (», : a,) 277, and

Work lost per revol. % , .1
with =2 f N 2mr=—-=L——F Rnr.
friction-wheels, a, @, co8 a‘f

Whereas, if C revolved in a fixed bearing,

Work lost per revol.
without % =f R2nr.
friction-wheels,

Apparently, then, there is a saving of work in the ratio »,:
a, cos a, but strictly the 2 is not quite the same in the two cases ;
for with friction-wheels the force £ is less than without, and &
depends on P as well as on the known & and P,. By dimin-
ishing the ratio 7, : @, and the angle a, the saving is increased.
If a were so large that cos a < 7, : @,, there would be no saving,
but the reverse.

As to the valne of P to maintain uniform rotation, we have

13
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for equilibrium of moments about C, with friction-wheels (con-
sidering the large wheel and axle free),

Pb=Ph+2Tr, . . . . . . (1)
in which 7" is the tangential action, or “grip,” between one
pair of friction-wheels and the axle € which rolls upon them.
T would not equal fN unless slipping took place or were im-
pending at Z, but is known by consldermg a pair of friction-
wheels free, when = (Pa) about 0 gives

=
Ta, =f N, _f2 ‘cos
which in (1) gives finally
b, ”, r
.P = zP, + W‘Rb . . * e . (2)
Without friction-wheels, we would have

P=YP+rE. ... ... .@®

The last term in (2) is seen to be less than that in (3) (unless
a is too large), in the same ratio as already found for the saving
of work, supposing the /2’s equal.

If P, were on the same side of ( as P, it would be of an
opposite direction, and the pressure /2 would be diminished.
Again, if P were horizontal, /2 would not be vertical, and the
friction-wheel axles would not bear equal pressures. Since P
depends on P, @, and the frictions, while the friction depends
on R, and R on P, G, and P, an exact analysis is quite
complex, and is not warranted by its practical utility.

FErample.—If an empty vertical water-wheel weighs 25,000
1bs., required the force /> to be applied at its circumference to
maintain a uniform motion, with @ = 15 ft., and » = 5 inéthes.
Here P, = 0, and R = G (nearly ; neglecting the influence of
P on R),i.e. B = 25,000 lbs.

First, without friction-wheels (adopting the foot-pound-sec-
ond system of units), with /” = .07 (abstract number). From
eq. (3) we have

P =04 0.07 X 25,000 X (f + 15) = 48.6 lbs.
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The work lost in friction per revolution is
J RB2mr = 0.07 X 25,000 X 2 X 8.14 X f§ = 4580 ft.-lbs.

Secondly, with friction-wheels, in which » : a, = } and
cos a = 0.80 (i.e., a = 36°). From eq. (2)

‘ P=0+1%. 1s°-><486_0n1y1215lbs.,
while the work-lost per revolution
= }.42 X 4580 = 1145 ft.lbs.

Of course with friction-wheels the wheel is not so steady as
without.

In this exawmple the force P has been simply enough to
overcome friction. In case the wheel is in actual use, P is the
weight of water actually in the buckets at any instant, and does
the work of overcoming P,, the resistance of the mill inachinery,
and also the friction. By placing P, pointing upward on the
same side of C as P, and making b, nearly = b, R will = @
nearly, just as when the wheel is running empty; and the
foregoing numerical results will still hold good for practical

purposes.

168. Friction of Pivots.—In the case of a vertical shaft or
axle, and sometimes in other cases, the extremity requires sup-
port against a thrust along the axis of the axle or pivot. If
the end of the pivot is fla¢ and also the surface
against which it rubs, we may consider the
pressure, and therefore the friction, as- uniform
over the surface. With a flat circular pivot,
then, Fig. 180, the frictions on a small sector
of the circle form .a system of parallel- forces
whose resultant is equal to their sum, and is -
applied a distance of 47 from the centre. Hence the sum of
the moments of all the frictions about -tlie centre = fR$r, in
which R is the axial pressure. Therefore a force P necessary
to overcome the friction with uniform rotation must have a
imoment :

F1a. 180.

Pa = fRyr. |
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and the work lost in friction per revolution is

=fR2x . Yr=4xfRr. . . . . (1)

As the pivot and step become worn, the resultant frictiots
in the small sectors probably approach the centre; for the
greatest wear occurs first near the outer edge, since there the
product pv is greatest (see § 166). Hence for § we may more
reasonably put ¢~

Ezample.—A vertical flat-ended pivot presses its step with
a force of 12 tons, is 6 inclies in diameter, and makes 40 revolu-
tions per minute. Required the H. P. absonbed by the friction..
Supposing the pivot and step new, and f for good lubrication
= 0.07, we have, from eq. (1) (foot-1b.-second),

Work lost per revolution

= .07 X 24,000 X 6.28 X §.% = 1758.4 ft.-lbe.,
and .’. work per second
= 17584 X §% = 1172.2 ft.-1bs,,

which + 550 gives 2.13 H. P. absorbed in friction. If ordi-
nary axle-friction also occurs its effect must be added.

" If the flat-ended pivot is Aollow, with radii », and 7,, we may
put #(», + »,) instead of the §» of the preceding.

It is obvious that the smaller the lever-arm given to the
resultant friction in each sector of the rubbing surface the
smaller the power lost in friction. Hence pivots should be
made as small as possible, consistently with strength.

For a conical pivot and step, Fig. 181, the resultant friction
in each sector of the conical bearing surface has
\ a lever-arm = §r, about the axis 4, and a value
r > than for a flat-ended pivot; for, on account
A~ of the wedgelike action of the bodies, the
pressure causing friction is greater. The sam of

Jr~~ | the moments of these resultant frictions about
Fio. 181, A is the same as if only two elements of the
cone received pressure (each = V= R < sin a). Hence the

R

E N
N

&
z/
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moment gf friction of the pivot, i.e., the moment of the force
necessary to maintain uniform rotation, is

2 R 2
Pa =f2lV§r, =f——2z"

sin a 8

. 4+ R

and work lost per revolution = 3—11‘7:'{;1—';?‘,.
By making 7, small enougl, these values may be made less
than thoee for a flatended pivot of the same diameter = 2r.

In Schiele’s ¢ anti-friction” pivots the outline is designed
according to the following theory for securing uniform vertical
wear. Let p = the pressure per
horizontal unit of area (i.e.,
= R =+ horizontal projection of
the actual rubbing surface);
this is assumed constant. Let
the unit of area be small, for
algebraic simplicity. The fric- Fra. 182.
tion on the rubbing surface, whose horizontal projection=nunity,
i8 = fN =f(p + sin a) (see Fig. 182; the horizontal com.-
ponent of p is annulled by a corresponding one opposite). The
work per revolution in producing wear on this area = f¥2xy.
But the vertical depth of wear per revolution is to be the same
at all parts of the surface; 'and this implies that the same
volume of material is worn away under each horizontal unit of

area. Hence fN27y, i.e., féi’x%g"% is to be constant for all

valnes of ¥ ; and since /p and 27 are constant, we must have,
as the law of the curve,

o e, the tangent BC = the same at all points.

~ This curve is called the “#ractriz.” Schiele’s pivots give a
very uniform wear at high speeds. The smoothness of wear
prevents leakage in the case of cocks and faucets.

169. Normal Pressure of Belting.— When a perfectly flexible
cord, or belt, is stretched over a smooth cylinder, both at rest,
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the action between them is normal at every point. As to its
t g amount, p, per linear unit of are, the fol-
7" lowing will determine. Consider a semi-
/B, t  circle of the cord free, neglecting its weight.
NS Fig. 183. The forces holding it in equilib-
rinm are the tensions at the two ends (these
are equal, manifestly, the cylinder being
AN J.smooth; for they are the only two forces
47 Tl having moments about C, and each has the
Fio. 183. “same lever-arm), and the normal pressures,
which are infinite in number, but have an intensity, p, per
linear unit, which must be constant along the curve since § is
the same at all points. The normal pressure on a single ele-
ment, ds, of the cord is = pds, and its X component =
pds cos 6 = prd0 cos 8. Hence ZX = 0 gives

f" 646 —28 = 0, i [" '6—2&-
2,/ cos —28=0,ie,rp| _sin6=25;

arpll—(=D]=28 or p=2.. . .. (

170. Belt on Rough Cylinder. Impending Slipping.—If fric-
tion is possible between the two bodies, the tension may vary
along the arc of contact, so that palso varies, and consequently

Fio. 184,

the friction on an element ds being = fpds = f(8 <+ r)ds, also
varies. If slipping is impending. the law of variation of the
tension 8§ may be fourd, as follows: Fig. 184, in which the
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Impending slipping is toward the left, shows the cord free.
For any element, ds, of the cord, we Lave, putting = (moms.
about 0) = 0 (Fig. 185),

S8+ d8)yr = 8r 4 dFr; ie., dF =dS,

or (see above) dS = f(S + r)ds.
But ds = rd0 ; hence, after transforming,

36 = dS.......(l)

In (1) the two variables 6 and & are separated; (1) is there-
fore ready for integration.

f/'de S’le’

Ja = log, S, — log, S, log,[ S,,] )]
Or, by inversion, Sele==8,, . . 3)

¢, denoting the Naperian base, = 2.71828 -|-; a of course is in

#-measure.

Bince §, evidently increases very rapidly as @ becomes
larger, 8, remaining the same, we have the explanation of the
well-known fact that a comparatively small tension, S,, exerted
by a man, is able to prevent the slipping of a rope around a
pile-head, when the further end is under the great tension S,
due to the stopping of a moving steamer. For example, with
J = %, we have (Weisbach)

for « = } turn, or &« = 4x, S, = 1.6985,;
=4tarn, or a = 7, 8, = 2.8585,;
= 1turn, or @ = 27, §, = 8.12§,;
= 2 turns, or @ = 47. S, = 65.948, ;
= 4 turns, or @ = 87, 8, = 4348.568,.

If slipping actually occurs, we must use a value of f for frie-
tion of motion.

Example.—A leather belt drives an iron pulley, covering
one half the circumference. What is the limiting value of the
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ratio of S, (tension on driving-side) to S, (tension on follow-
ing side) if the belt is not to slip, taking the low value of

= 0.25 for leather on iron ¢

‘We have given fa = 0.25 X 7 = .7854, which by eq. (2) is
the Naperian log. of (8, : S,) when slipping occurs. Hence the
common log. of (S,:8,) = 0.7854 X 0.43429 = 0.34109 ; i.e,
if

(8, : S, = 2.193, say 2.2,

the belt will slip (for /' = 0.25).

(0.43429 is the modulus of the common system of loga.
rithms, and = 1:2.30258. See example in §48.)

At very high speeds the relation p = § + » (in § 169) is not
strictly true, since the tensions at the two ends of an element
ds are partly employed in furnishing the necessary deviating
force to keep the element of the cord in its circular path, the
remainder producing normal pressure.

171. Transmission of Power by Belting or Wire Rope.—In the
simple design in Fig. 186, it is required to find the motive
weight G, necessary to overcome the given resistance 2 at a

Fia. 186

uniform velocity = 2,;, also the proper stationary {Zension
weight G, to prevent slipping of the belt on its pulleys, and
the amount of power, Z, transmitted.

In other words,

. R, a, r, a, r,; « = = for both pulleys, }
Given: { v,; and f for both pulleys;

cod . § L3 @, tofurnish L; @, fornoslip ; vthe velocity
Required ; g of @; o that of belt ; and the tens’ions in belt.
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Neglecting axle-friction and the rigidity of the belting, the
power transmitted is that required to overcome R through a
distance = v, every second, i.e.,

L=Ry. . . . . ... @1
Since (if the belts do not slip)
ag:ruv v, and @, 70 0,
a, _ra
we have v’=;.—"v,, and V=gt oo e )

Neglecting the mass of the belt,and assuming that each pul-
ley revolves on a gravity-axis, we obtain the following, by con-
sidering the free bodies in Fig. 187:

Sa

‘So G

G
@ free) (B free) (B and truck fres)
Firo. 187.

2 (moms.) = 0in A4 free gives Rr, = (S, — S)a,;. (3)
Z (moms.) = 0in B free gives Gr = (S, —S)a; . (4)
whence we readily find =:‘—' . ;;‘R.

Evidently & and & are inversely proportional to their velo-
cities v, and v ; see (2). This ought to be true, since in Fig.
186 & is the only working-force, & the only resistance, and
the motions are uniform ; hence (from eq. (XV1.), §142)

Gv — Ry, = 0.
2X = 0, for B and truck free, gives

G=8+8 . . ... ..
while, for impending slip,

So=8er. . . . . .. . (6)
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By elimination between (4), (5), and (8), we obtain
@ = G?_' eff4+1 _ L e 41

F—iwea—r -+ @
L ef*
and 8, =3 peily e USRI )|

Hence @, and 8, vary directly as the power transmitted and
inversely as the velocity of the belt. For safety @, should be
made > the above value in (7); corresponding values of the
two tensions may then be found from (5), and from the rela-
tion (see § 150)

Se—=8Sp'=L . . . . . . (6a)

These new values of the tensions will be found to satisfy the
condition of no slip, viz.,

(Su:8,) < " (§ 170).

For leather on iron, ¢/* = 2.2 (see example in §170), as a
low value. The belt should be made strong enough to with-
stand S, safely.

As the belt is more tightly stretched, and hence elongated,
on the driving than on the following side, it “creeps” back-
ward on the driving and forward on the driven pulley, so that
the former moves slightly faster than the latter. The loss of
work due to this cause does not exceed 2 per cent with ordinary
belting (Cotterill).

In the foregoing it is evident that the sum of the tensions in
the two sides = &,, i.e., is the same, whether the power is
being transmitted or not; and this is found to be true, both in
theory and by experiment, when a tension-weight is not nsed,
viz., when an initial tension § is produced in the whole belt
before transmitting the power, then after turning on the latter
the sum of the two tensions (driving and following) always
= 24, since one side elongates as much as the other contracts ;
it being understood that the pulley-axles preserve a constant
distance apart.

172. Rolling Friction.—The few experiments which have
been made to determine the resistance offered by a level road-
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way to the uniform motion of a roller or wheel rolling upon it
corroborate approximately the following theory. The word
friction is hardly appropriate in this connection (except when
the roadway is perfectly elastic, as will be seen), but is sanctioned
by usage.

First, let the roadway or track be compressible, but inelastic,
G the weight of the roller and its load, and P the horizontal
force necessary to preserve a uniform motion
(both of translation and rotation). The track
(or roller itself) being compressed just in
front, and not reacting symmetrically from
behind, its resultant pressure against the
roller is not at O vertically under the centre,
but some small distance, 0D = b, in front. (The successive
crushing of small projecting particles has the same effect.)
Since for this case of motion the forces have the same relations
as if balanced (see § 124), we may put = moms. about D = 0,

o Pr=Gb; or, P=;b;G. N ¢4}
Coulomb found for
Rollers of lignum-vitee on an oak track, & = 0.0189 inches;
Rollers of elm on an oak track, b = 0.0320 inches.

Weisbach’s experiments give, for cast-iron wheels 20 inches in
diameter on cast-iron rails, :
b = 0.0183 inches;

and Rittinger, for the same, b = 0.0193 inches.
Pambour gives, for iron railroad wheels 39.4 inches in diameter,
b = 0.0196 to

0.0216 inches.

According to the foregoing theory, P, the “rolling frietion”
(see eq. (1)), is directly proportional to &, and inversely to the
radius, if & is constant. The experiments of General Morin and
others confirm this, while those of Dupnit, Poirée, and Sauvage-
indicate it to be proportional directly to @, and inversely to the
square root of the radius.
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Although b is a distance to be expressed in linear units, and
uot an abstract number like the f and f* for sliding and axle-
friction, it is sometimes called a “coefficient of rolling frie-
tion.” In eq. (1), 5 and » should be expressed in the same
unit.

Of course if P is applied at the top of the roller its lever-
arm about D is 2» instead of 7, with a corresponding change
in eq. (1).

With ordinary railroad cars the resistance due to axle and
rolling frictions combined is about 8 Ibs. per ton of weight on
a level track. For wagons on maeadamized roads = § inch,
bat on soft ground from 2 to 3 inches.

Secondly, when the roadway is perfectly elastie. This is
<hiefly of theoretic interest, since at first sight no force would
be considered necessary to maintain a uniform rolling motion.
Baut, as the material of the roadway is compressed under the
roller its surface is first elongated and then recovers its former
state ; hence some rubbing and consequent sliding friction must

Fia. 189,

occur. Fig. 189 gives an exaggerated view of the circum-
stances, P being the horizontal force applied at the centre
necessary to maintain a uniform motion. The roadway (rub-
ber for instance) is heaped up both in front and behind the
roller, O being the point of greatest pressure and elongation
of the surface. The forces acting are &, P, the normal
pressures, and the frictions due to them, and must form a
balanced system. Hence, since & and P, and also the normal
pressures, pass through C, the resultant of the frictions must
also pass through C; therefore the frictions, or tangential
actions, on the roller must be some forward and some backward
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(and not all in one direction, as seems to be asserted on p. 260
of Cotterill’s Applied Mechanics, where Professor Reynolds’
explanation is cited). The resultant action of the roadway
upon the roller acts, then, through some point D, a distance
0D = b ahead of 0, and in the direction DC, and we have as
before, with ) as a centre of moments,

Pr=@Gb or P= ;b;G.
If rolling friction is encountered above as
well as below the rollers, Fig. 190, the
student may easily prove, by considering r—[:p'—j—"v
three separate free bodies, that for uniform
motion

N
)

_ b3, ‘ Fio. 190.
P=——=6 ...... (2 .

where b and , are the respective ¢ coefficients of rolling fric-
tion” for the upper and lower contacts.

Example 1.—If it is found that a train of cars will move
uniformly down an incline of 1 in 200, gravity being the only
working force, and friction (both rolling and axle) the only
resistance, required the coefficient, f°, of axle-friction, the
diameter of all the wheels being 27 = 30 inches, that of the
journals 2z =3 inches, taking & = 0.02 inch for the rolling
friction. Let us use equation (XVI.) (§ 142), noting that while
the train moves a distance s measured on the incline, its weight

@ does the work & 72%6 8, the rolling friction -f; G (at* the axles)
has been overcome through the distance s, and the axle-friction
(total) through the (relative) distance 77 & in the journal boxes;

whence, the change in kinetic energy being zero,

1 b a
mae—rGe—;f08=O.

@s cancels out, the ratios b:7 and @ : 7 are = % and i,
respectively (being ratios or abstract numbers they have the

* That is, tha ideal resistance, at centre of axles and || to the incline, equiv-
alent to actual rolling resistance.
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same numerical values, whether the inch or foot is used), and
solving, we have

S = 0.05 — 0.0133 = 0.036.

Example 2.—How many pounds of tractive effort per tor
of load would the train in Example 1 require for uniform mo-
tion on a level track ¢ Ans. 10 lbs.

178. Railroad Brakes.—During the uniform motion of a
railroad car the tangential action between the track and each
wheel is small. Thus, in Example 1, just cited, if ten cars of
eight wheels each make up the train, each car weighing 20 tons,
the backward tangential action of the rails upon each wheel is
only 25 Ibs. When the brakes are applied to stop the train
this action is much increased, and is the only agency by which
the rails can retard the train, directly or indirectly : directly,
when the pressure of the brakes is so great as to prevent the
wheels from turning, thereby causing them to “skid” (i.e.,
slide) on the rails; ¢nderectly, when the brake-pressure is of
such a value as still to permit perfect rolling of the wheel, in
which case the rubbing (and heating) occurs between the brake
and wheel, and the tangential action of the rail has a value
equal to or less than the friction of rest. In the first case,
then (skidding), the retarding influence of the rails is the fric-
tion of motion between rail and wheel; in the second, a force
which may be made as great as the friction of rest between rail
and wheel. Hence, aside from the fact that skidding produces
objectionable flat places on the wheel-tread, the brakes are
more effective if so applied that skidding is ¢mpending, but
not actunally prodnced ; for the friction of rest is usually greater
than that of actual slipping (§160). This has been proved
experimentally in England. The retarding effect of axle and
rolling friction has been neglected in the above theory.

Ezample 1.—A twenty-ton car with an initial velocity of 80
feet per second (nearly a mile a minute) is to be stopped on a
level within 1000 feet; required the necessary friction on each
of the eight wheels.

Supposing the wheels not to skid, the friction will occar
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between the brakes and wheels, and is overcome through the
(relative) distance 1000 feet. Eq. (XVL.), § 142, gives (foot-
Ib.-second system)
1 40000 _
0 — 87X 1000 = 0—§ —52.—2(80),
from which # (= friction at circumference of each wheel)
= 496 lbs.

Ezxample 2.—Suppose skidding to be impending in the fore-
going, and the coefficient of friction of rest (i.e., impending
slipping) between rail and wheel to be = 0.20. In what
distance will the car be stopped ¢ Ans. 496 ft.

Erample 3.—Suppose the car in Example 1 to be on an up-
grade of 60 feet to the mile. (In applying eq. (XVI.) here,
the weight 20 tons will enter as a resistance.) Ans. 439 lbs.

Example 4—In Example 3, consider all four resistances,
viz., gravity, rolling friction, and brake and axle frictions, the
distance being 1000 ft., and Z the unknown guantity.

(Take the wheel dimensions of p. 189.) Ans. 414 1bs,

174. Estimation of Engine and Machinery Friction.—Accord-
ing to Professor Cotterill, 2 convenient way of estimating the
work lost in friction in a steam-engine and machinery driven
by it is the following :

Let p,, = mean effective steam-pressure per unit of area of
piston, and conceive this composed of three por-
tions, viz.,

2, = the necessary pressure to drive the engine alone un-
loaded, at the proper speed ;
P’w = pressure necessary to overcome the resistance caused
by the useful work of the machines;

ép’» = pressure necessary tn overcome the friction of the

machinery, and that of the engine over and above*
its friction when unloaded. This is abount 15% of
P'm (i.e, ¢ = 0.15), except in large engines, and
then rather less.

That is, by formula, # being the piston-area and / the length
of stroke, the work per stroke is thus distributed :

F Pnl =F [(1 + 6)?’.. +P.]l,

* Recent experiments (1888) by Prof. Thurston show that this surplus
engine-friction is practically zero.
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P, is “from 1 to 14, or in marine engines 2 lbs. or more per
square inch.”

175. Anomalies in Frietion.—Experiment has shown consid-
erable deviation under certain circumstances from the laws of
iriction, as stated in § 157 for sliding friction. At pressures
below § lb. per sq. inch the coefficient f increases when the
pressure decreases, while above 500 lbs. (Rennie, with iron and
steel) it increases with the pressure. With high velocities, how-
ever, above 10 ft. per second, f is much smaller as the velocity
increases (Bochet, 1858).

As for axle-friction, experiments instituted by the Society of
Mechanical Engineers in England (see the London Engincer
for March 7 and 21, 1884) gave values for /° less than }y
when a “bath” of the lubricant was employed. These values
diminished with increase of pressure, and increased with the
velocity (see below, Hirn’s statement).

Professor Cotterill says, “ It cannot be doubted that for
values of pv (see § 166) > 5000 the coefficient of friction of
well-lubricated bearings of good construction diminishes with
the pressure, and may be much less than the valune at low speeds
as determined by Morin” (p. 259 of his Applied Mechanics).

Professor Thurston’s experiments confirmed those of Hirn as
to the following relation: “The friction of lubricated surfaces
is nearly proportional to the square root of the area and pres-
sure.” Hirn also maintained that, “in ordinary machinery,
friction varies as the square root of the velocity.”

176. Rigidity of Ropes.—If a rope or wire cable passes over
a pulley or sheave, a force P is required on one side greater
than the resistance @ on the other for uniform motion, aside
from axle-friction. Since in a given time both P and @
describe . the same space 8, if P is > @, then Psgis > s, i.e.,
the work done by P is > than that expended upon Q. This
is because some of the work Ps has been expended in bending
the stiff rope or cable, and in overcoming friction between the
strands, both where the rope passes nupon and where it leaves
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the pulley. With hemp ropes, Fig. 191, the material being
nearly inelastic, the energy spent in bending it on at D is
nearly all lost, and energy must also be spent in straightening

i
R B]
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it.at Z'; but with a wire rope or cable some of this energy is
restored by the elasticity of the material. The energy spent
in friction or rubbing of strands, however, is lost in both cases.
The figure shows geometrically why P must be > @ for a
uniform motion, for the lever-arm, a, of P is evidently < b
that of Q. If axle-friction is also considered, we must have

Pa=@b+7 (P+ Qn,

7 being the radius of the journal.

Experiments with cordage have been made by Prony, Coun-
lomb, Eytelwein, and Weisbach, with considerable variation in
the results and formule proposed. (See Coxe’s translation of
vol. i., Weisbach’s Mechanics.)

With pulleys of large diameter the effect of rigidity is very
slight. For instance, Weisbach gives an example of a pulley
five feet in diameter, with which, @ being = 1200 lbs., P
=1219. A wire rope § in. in diameter was used. Of this
difference, 19 1bs., only 5 1bs. was due to rigidity, the remainder,
14 1bs., being cansed by axle-friction. When a hemp-rope 1.6
inches in diameter was substituted for the wire one, P— Q=27
1bs., of which 12 lbs. was due to the rigidity. Hence in one
case the loss of work was less than 4 of 1%, in the other about
1%, caused by the rigidity. For very small sheaves and thick
ropes the loss is probably much greater.

13



194 MECHANICS OF ENGINEERING.

177. Miscellaneous Examples.—Zrample 1. The end of a
shaft 12 inchesin diameter and making 50 revolutions per min-
ute exerts against its bearing an axial pressure of 10 tons and
a lateral pressure of 40 tons. With f=jf" = 0.05, required
the H. P. lost in friction. Ans. 22.2 H. P.

Example 2.—A leather belt passes over a vertical pulley,
covering half its circumference. One end is held by a spring
balance, which reads 10 lbs. while the other end sustains a
weight of 20 lbs., the pulley making 100 revolutions per min-
ute. Required the coefficient of friction, and the H.P. spent
in overcoming the friction. Also suppose the pulley turned
in the other direction, the weight remaining the same. The
diameter of the pulley is 18 inches. Ans { J=022;

' " 10.142and .284H. P.

Example 3.—A grindstone with a radius of gyration = 13
inches has been revolving at 120 revolutions per minute, and
at a given instant is left to the influence of gravity and axle
friction. The axles are 13 inches in diameter. and the wheel
makes 160 revolutions in coming to rest. Required the coeffi-
cient of axle-friction. Ans. f = 0.389,

Example 4.—A board A, weight 2 lbs., rests horizontally on
another B; coefficient of friction of rest between them being
J=0380. B is now moved horizontally. with a uniformly
accelerated motion, the acceleration being = 15 feet per “ square
second ;” will 4 keep company with it, or not! _Ans. “No.”



PART III.

STRENGTH OF MATERIALS.

[Or MEOHANIOS OF MATERIALS].

CHAPTER L

ELEMENTARY STRESSES AND STRAINS.

178. Deformation of Solid Bodies—In the preceding por-
tions of this work, what was called technically a “rigid
body,” was supposed incapable of changing its form, i.e.,
the positions of its particles relatively to each other, under
the action of any forces to be brought upon it. This sup-
position was made because the change of form which must
actually occur does not appreciably alter the distances,
angles, etc.,, measured in any one body, among most of
the pieces of a properly designed structure or machine.
To show how the individual pieces of such constructions
should be designed to avoid undesirable deformation or
injury is the object of this division of Mechanics of En-
gineering, viz., the Strength of Materials.

Fra. 102. §178

As perhaps tne simplest instance of the deformation or
distortion of a solid, let us consider the case of a prismatio
rod in a state of tension, Fig. 192 (link of a surveyor’s
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chain, e.g.). The pull at each end is P, and the body is
said to be under a tension of P (lbs., tons, or other unit),
not 2P. Let ABOD be the end view of an elementary
parallelopiped, originally of square section and with faces
at 45° with the axis of the prism. It is now deformed, the
four faces perpendicular to the paper being longer® than
before, while the angles BAD and BOD, originally right
angles, are now smaller by a certain amount 3, 4BC and
ADC larger by an equal amount 8, The element is said
to be in a state of strain, viz.: the elongation of its edges
(parallel to paper) is called a tensile strain, while the alter-
ation in the angles between its faces is called a shearing
strain, or angular distortion (sometimes also called a slid-
ing, or tangential, strain, since B( has been made to slide,
relatively to 4D, and thereby caused the change of angle).

- [This use of the word strain, to signify change of form and
not the force producing it, is of recent adoption among
many, though not all, technical writers.}

179. Strains. Two Kinds Only.—Just as a curved line may
be considered to be made up of small straight-line ele-
ments, so the substance of any solid body may be consid-
ered to be made up of small contiguous parallelopipeds,
whose angles are each 90° before the body is subjected to
the action of forces, but which are not necessarily cubes.
A line of such elements forming an elementary prism is
sometimes called a fibre, but this does not necessarily imply
a fibrous nature in the material in question. The system
of imaginary cutting surfaces by which the body is thus
subdivided need not consist entirely of planes ; in the sub-
ject of Torsion, for instance, the parallelopipedical ele-
ments considered lie in concentric cylindrical shells, cut
both by transverse and radial planes.

Since these elements are taken so small that the only
possible changes of form in any one of them, as induced
by a system of external forces acting on the body, are

* When « is nearly 0° (or 90°) BC and AD (or AB and DO) are shorter
than before, on uccount of lateral contraction; see § 198.
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elongations or contractions of its edges, and alteration of
its angles, there are but two kinds of strain, elongation
(contraction, if negative) and shearing,

180. Distributed Forces or Stresses—In the matter preced-
ing this chapter it has sufficed for practical purposes to
consider a force as applied at a point of a body, but in
reality it must be distributed over a definite area; for
otherwise the material would be subjected to an infinite
force per unit of area. (Forces like gravity, magnetic at-
traction, etc., we have already treated as distributed over
the mass of a body, but reference is now had particularly
to the pressure of one body against another, or the action
of one portion of the body on the remainder.) For in-
stance, sufficient surface must be provided between the
end of a loaded beam and the pier on which it rests to
avoid injury to either. Again, too small a wire must not
be used to sustain a given load, or the tension per unit
of area of its cross seetion becomes sufficient to rupture
it.

Stress is distributed force, and its intensity at any point
of the area is

dpP
=2F - ‘.(1)

where dF is a small area containing the point and dP the
force coming upon that area. If equal dP’s (all parallel)
act on equal dF'’sof a plane surface, the stress is said to
be of uniform intensity, which is then

= - - e @)

where P==; total force and F the total area over which it
acts. The steam pressure on a piston is an example of
stress of uniform intensity.
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For example, if a force P—28800 lbs, is uniformly dis-
tributed over a plane area of F'=72 sq. inches, or ¥ of a
8q. foot, the intensity of the stress is

p=2320—400 1bs. per sq. inch,

(or p —=28800-14=57600 lbs. per sq. foot, or p=14.400+
34=28.8 tons per sq. ft., ete.).

181, Stresses on an Element; of Two Kinds Only.—When a

solid body of any material is in equilibrium under a sys-
tem of forces which do not rupture it, not only is its shape
altered (i.e. its elements are strained), and stresses pro-
duced on those planes on which the forces act, but other
stresses also are induced on some or all internal surfaces
which separate element from element, (over and above the
forces with which the elements may have acted on each
other before the application of the external stresses or
“applied forces”). So long as the.whole solid is the “ free
body” under consideration, these internal stresses, being
the forces with which the portion on one side of an imag-
inary cutting plane acts on the portion on the other side,
do not appear in any equation of equilibrium (for if intro-
duced they would cancel out); but if we consider free a
portion only, some or all of whose bounding surfaces are
cutting planes of the original body, the stresses existing
on these planes are brought into the equations of equilib-
rium. .
Similarly, if a single element of the body is treated by
itself, the stresses on all six of its faces, together with its
weight, form a balanced system of forces, the body being
supposed at rest.

R

I
Fia. 108
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As an example of internal stress, consider again the case
of a rod in tension ; Fig. 193 shows the whole rod (or eye-
bar) free, the forces P being the pressures of the pins in
the eyes, and causing external stress (compression here)
on the surfaces of contact. Conceive a right section made
through RS, far enough from the eye, C, that we may con-
sider the internal stress to be uniform in this section, and
consider the portion RSO as a free body, in Fig.'194. The
stresses on RS, now one of the bounding surfaces of the
free body, must be parallel to P, ie., normal to BS;
(otherwise they would have components perpendicular to
P, which is precluded by the necessity of XY being = 0,
and the supposition of uniformity.) Let F = the sec-

Fia. 195.

tional area RS, and p = the styess per unit of area; then

X0 gives P—= Fp, i.e., p— 1;, RN
The state of internal stress, then, is such that on planes
perpendicular to the axis of the bar the stress is tensile and
normal (to those planes). Since if a section were made
oblique to the axis of the bar, the stress would still be
parallel to the axis for reasons as aboye, it is evident that
on an oblique section, the stress has components both nor-
mal and tangential to the section, the normal component
being a tension.
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The presence of the tansential or shearing stress in ob-
lique sections is rendered evident by considering that if an
oblique dove-tail joint were cut in the rod, Fig. 195, the
shearing stress on its surfaces may be sufficient to over-
come friction and cause sliding along the oblique plane.

If a short prismatic block is under the compressive ac-
tion of two forces, each =P and applied centrally in one
base, we may show that the state of internal stress is the
same a8 that of the rod under tension, except that the nor-
mal stresses are of contrary sign, i.e., compressive instead
of tensile, and that the shearing stresses (or tendency to
slide) on oblique planes are opposite in direction to those
in the rod.

Since the resultant stress on a given internal plane of a
body is fully represented by its normal and tangential
components, we are therefore justified in considering but
two kinds of internal stress, normal or direct, and tangen-
tial or shearing. :

182. Stress on Oblique Section of Rod in Tension—Consider
B free a small cubic element whose

edge =—a in length; it has two
== faces parallel to the paper, being

— taken near the middle of the rod
<——— in Fig. 192. Let the angle which
— the face 4B, Fig. 196, makes with
Fia. 1%6. the axis of the rod be = a. This

. _~"\$ angle, for our present purpose, is
A,'(}‘ 8 /)’ considered to remain the same
- \_~ while the two forces P are acting,
\ 88 before their action. The re-

\

- sultant stress on the face 4B hav-
—_— ing an intensity p= P F, (see eq.

~ \" \ \ 2) per unit of transverse section

of rod, is = p (a sin a) a. Hence

Fue. 197. its component normal to 4B is

pa? sin? a; and the tangential or shearing component along
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AB—=pa?sinacosa. Dividing by the area, a2, we have
the following:

For a rod in simple tension we have, on a plane making
an angle, a, with the axis:

a Normal Stress — p sina per unit of area . . (1)

and a Shearing Stress ==p sin a cos « per unit of area . (2)

¢ Unit of area” here refers to the oblique plane in ques-

tion, while p denotes the normal stress per unit of area of
a transverse section, i.e., when a=90°, Fig. 194.

The stresses on CD are the same in value as on 4B,
while for BC and 4D we substitute 90°—a for . Fig.
197 shows these normal and shearing stresses, and also,
much exaggerated, the strains or change of form 6f the
element (see Fig. 192).

182a. Relation between Stress and Strain.—Experiment
shows that so long as the stresses are of such moderate
value that the piece recovers its original form completely
when the external forces which induce the stresses are re-
moved, the following is true and is known as Hooke’s Law
{stress proportional to strain). As the forces P in Fig,
193 (rod in tension) are gradually increased, the elonga-
tion, or additional length, of RK increases in the same
ratio as the normal stress, p, on the sections RS and KN,
per unit of area [§ 191].

As for the distorting effect of shearing stresses, consider
in Fig. 197 that since

P sin a cos a = p cos (90°—a) s (90°—a)

the shearing stress per unit of area is of equal value cn all
Jour of the faces (perpendicular to paper) in the elementary
block, and is evidently accountable for the shearing strain,
ie., for the angular distortion, or difference, 4, between
90° and the present value of each of the four angles. Aec-
oording to Hooke’s Law then, as P increases within tha
limit mentioned above, & varies proportionally to

P 8in a cos a, ie. to the stress.
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182b. Example.—Supposing the rod in question were of
a kind of wood in which a shearing stress of 200 lbs. per
8q. inch along the grain, or a normal stress of 400 Ibs. per
8q. inch, perpendicular to a fibre-plane will produce rup-
ture, required the value of a the angle which the grain
must make with the axis that, as P increases, the danger
of rupture from each source may be the same. This re-
quires that 200:400::p sin a cos a:p s8in2e, i.e. tan. a must
=2.000..a=6334°. If the ocross section of the rod is 2 sq.
inches, the force P at each end necessary to produce rup-
ture of either kind, when a=6334°, is found by putting
psin acos a—200.".p==500.0 1bs. per 8q. inch. Whence, since
p=P-F, P=1000 lbs, (Units, inch and pound.)

188. Elasticity is the name given to the property which
most materials have, to a certain extent, of regaining their
original form when the external forces are removed. If
the state of stress exceeds a certain stage, called the Elastic
Limit, the recovery of original form on the part of the ele-
ments is only partial, the permanent deformation being
called the Set.

Although theoretically the elasticlimit is a perfectly defi-
nite stage of stress, experimentally it is somewhat indefi-
nite, and is generally considered to be reached when the
permanent set becomes well marked as the stresses are in-
creased and the test piece is given ample time for recovery
in the intervals of rest.

The 8afe Limit of stress, taken well within the elastic
limit, determines the working strength or safe load of the
piece under consideration. E.g., the tables of safe loads
of the rolled wrought iron beains, for floors, of the New
Jersey Steel and Iron Co., at Trenton, are computed on
the theory that the greatest normal stress (tension or com-
pression) occurring on any internal plane shall not exceed
12,000 1bs. per sq. inch ; nor the greatest shearing stress
4,000 1bs. per sq. inch.
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The Ultimate Limit is reached when rupture ocours.

184. The Modulus of Elasticity (sometimes called co-efficient
of elasticity) is the number obtained by dividing the stress
per unit of area by the corresponding relative strain.

Thus, a rod of wrought iron }4 sq. inch sectional ares
being subjected to a tension of 214 tons=5,000 lbs., it is
found that a length which was six feet before tension is
=6.002 ft. during tension. The relative longitudinal strain
or elongation is then=(0.002)+-6=1:3,000 and the corres-
ponding stress (being the normal stress on a transverse
plane) has an intensity of

D= P+ F=5,000=-14 =10,000 lbs., per s8q. inch.

Hence by definition the modulus of elasticity is (for ten-
sion)

E = p,+e=10,000+ ;75=30,000,000 1bs. per sq. inch, (the

sub-script “t " refers to tension).

It will be noticed that since ¢ is an abstract number, E,
is of the same quality as p,, i.e., 1bs. per 8q. inch, or one di-
mension of force divided by two dimensions of length.
(In the subject of strength of materials the inch is the
most convenient English linear unit, when the pound is
the unit of force ; sometimes the foot and ton are used to-
gether.)

The foregoing would be called the modulus of elasticity
of wrought iron in tension in the direction of the fibre, as
given by the experiment quoted. But by Hooke’s Law p
and ¢ vary together, for a given direction in a given ma-
terial, hence within the elastic limit E is constant for a given
direction in a given material. Experiment confirms this
approximately.

Similarly, the modulus of elasticity for compression E,
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in a given direction in a given material may be determined
by experiments on short blocks, or on rods confined lat-
erally to prevent flexure.

As to the modulus of elasticity for shearing, E., we
divide the shearing stress per unit of area in the given
direction by J (in # measure) the corresponding angular
strain or distortion ; e.g., for an angular distortion of 1° or
6=.0174, and a shearing stress of 1,566 Ibs. per sq. inch,
we have E,——9,000,000 Ibs. per sq. inch.

Unless otherwise specified, by modulus of elasticity will
be meant a value derived from experiments conducted
within the elastie limit, and this, whether for normal stress
or for shearing, is approximately constant for a given di-
rection in a given substance,*

185. Isotropes—This name is given to materials which
are homogenous as regards their elastic properties. In
such a material the moduli of elasticity are individually
the same for all directions. E.g., a rod of rubber cut out
of a large mass will exhibit the same elastic behavior when
subjected to tension, whatever its original position in the
mass. Fibrous materials like wood and wrought iron are
not isotropie ; the direction of grain in the former must
always be considered. The “ piling” and welding of nu-
merous small pieces of iron prevent the resultant forging
from being isotropic. '

186. Resilience refers to the potential energy stored in a
body held under external forces in a state of stress which
does not pass the elastic limit. On its release from con-
straint, by virtue of its elasticity it can perform a certain
amount of work called the resilience, depending in amount
upon the circumstances of each case and the nature of the
material. See § 148.

187. General Properties of Materials—In view of some defi-
nitions already made we may say that a material is ductile

* The moduli, or ** co-eficients, of elasticity as used by physicists are well explained
in Stewart and Gee's Practical Physics, Vol. 1., pp. 164, etc. Their ** co-eficient of
rigidity " is our E,.
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when the ultimate limit is far removed from the elastic
limit; that it is drittle like glass and cast iron, when those
limits are near together. A small modulus of ‘elasticity

"means that a comparatively small force is necessary to
produce a given change of form, and vice versi, but implies
little or nothing concerning the stress or strain at the
elastic limit ; thus Weisbach gives ., Ibs. per s8q. inch for
wrought iron =28,000,000= double the F, for cast iron
while the dompressive stresses at the elastic limit are the
same for both materials (nearly).

188. General Problem of Internal Stress—This, as treated
in the mathematical Theory of Elasticity, developed by
Lamé, Clapeyron and Poisson, may be stated as follows:

Given the original form of a body when free from stress,
and certain co-efficients depending on its elastic proper-
ties ; required the new position, the altered shape, and the in-
tensity of the stress on each of the six faces, of every element
of the body, when a given balanced system of forces is applied
to the body.

Solutions, by this theory, of certain problems of the na-
ture just given involve elaborate, intricate, and bulky
analysis; but for practical purposes Navier's theories
(1838) and others of more recent date, are sufficiently exaoct,
when their moduli are properly determined by experiments
covering a wide range of cases and materials. These will
be given in the present work, and are comparatively sim-
ple. In some cases graphic will be preferred to analytic
methods as more simple and direct, and indeed for some
problems they are the only methods yet discovered for ob-
taining solutions. Again, experiment is relied on almost
exclusively in dealing with bodies of certain forms under
peculiar systems of forces, empirical formuls being based
on the experiments made; e.g., the collapsing of boiler
flues, and in some degree the flexure of long columns.
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189. Classification of Cases—Although in almost any case
whatever of the deformation of a solid body by a balanced
system of forces acting on it, normal and shearing stresses
are both developed in every element which is affected at
all (according to the plane seotion considered,) still, cases
where the body is prismatic, and the external system con-
sists of two equal and opposite foroes, one at each end of
the piece and directed away from each other, are commonly
called cases of Tension; (Fig. 192); if the piece is a short
prism with the same two terminal forces directed toward
each other, the case is said to be one of Compression; a case
similar to the last, but where the prism is quite long
(“long column "), is a case of Flexure or bending, as are also
most cases where the “applied forces” (i.e., the external
forces), are not directed along the axis of the piece. Rivet-
ed joints and “ pin-connections ” present cases of Shearing;
a twisted shaft one of Torsion. When the gravity foroes
due to the weights of the elements are also considered, a
combination of two or more of the foregoing general cases
may ocour.

In each case, as treated, the principal objects aimed at
are, 8o to design the piece or its loading that the greatest
stress, in whatever element it may occur, shall not exceed
a safe value ; and sometimes, furthermore, to prevent too
great deformation on the part of the piece. The first ob-
ject is to provide sufficient strength; the second sufficient
stiffness,

190. Temperature Stresses—If a piece is under such con-
straint that it is not free to change its form with changes
of temperature, external forces are induced, the stresses
produced by which are called femperature stresses.
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TENSION.

191. Hooke's Law by Experiment.—As a typical experiment
in the tension of a long rod of ductile metal such as
wrought iron and the mild steels, the following table is quot-
ed from Prof. Cotterill’s “ Applied Mechanics.” The experi-
ment is old, made by Hodgkinson for an English Railway
Commission, but well adapted to the purpose. From the
great length of the rod, which was of wrought iron and
0.517 in. in diameter, the portion whose elongation was
observed being 49 ft. 2 in. long, the small increase in length
below the elastic limit was readily measured. The succes-
sive loads were of such a value that the tensile stress
p— P+ F, or normal stress per sq. in. in the transverse
section, was made to increase by equal increments of 2657.5
Ibs. per sq. in,, its initial value. After each application of
load the elongation was measured, and after the removal
of the load, the permanent set, if any.

Table of elongations of 2 Wrvught 1ron Tod, of 8 Jengii—49 1 8 10,

y 4 2 a4 e=A=1 ry
Load, (bs. per | Elongation, mmz?ent e;:wmzf l(:;- 'Peﬂs.;nent
square inch.) (inches.) Elongation. | stract number.) (inches.)

1X2667.6 0485 0485 0.000082

X “ .1095 .061 000188

& * 1675 088 .000283 0.0013
@ = 24 .0565 .000879 .002
X * 2805 0563 000475 0027
X 887 0565 000570 .003
™> .308 088 004
8x * 452 .059 000708 0075
X * 5185 0635 0193
X - 598 0828 049
nx “ 700 .162 1565
7y “ 1.810 ) 0
. \
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Referring now to Fig. 198, the notation is evident. P
is the total load in any experiment, ¥ the cross section of
the rod ; henoe the normal stress on the transverse section
is p=P-+F. When the loads are increased by equal in-
crements, the corresponding increments of the elongation
4 should also be equal if Hooke'’s law is true. It will be
noticed in the table that this is very nearly true up to the
8th loading, i.e., that 44, the difference between two con-
secutive values of 4, is nearly constant. In other words the
proposition holds good :

P:P::d:4

if P and P, are any two loads below the 8th, and A and 2,
the corresponding elongations. °
The permanent set is just perceptible at the 3d load, and
increases rapidly after the 8th, as also the increment of
elongation. Hence at the 8th load, which produces a ten-
sile stress on the cross section of p=8x2667.5=21340.0
Ibs. per sq. inch, the elastic limit is reached.
As to the state of stress of the individual elements, if
we conceive such sub-division
par of the rod that four edges of
each element are parallel to the
1 axis of the rod, we find that it
]

dz i is in equilibrium between two

normal stresses on its end faces

n WA (Fig. 199) of a value — pd F-=

r (P+F)dF where dF is the hor-
o ':“ " e 190, izontal section of the element.

If dx was the original length,
and di the elongation produced by pdF, we shall have,
since all the dz’s of the length are equally elongated at the
same time,

dw T



g
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where = total (original) length. But di+dx is the rela-

tive elongation ¢, and by definition (§ 184) the Modulus of
Elasticity for Tension, E,=p-+¢

!
E—d/l or E;TI’I:. e e e (1)

dx

Eq. (1) enables us to solve problems involving the elonga-~
tion of a prism under tension, so long as the elastic limit
is not surpassed.

The values of E, computed from experiments like those.
just cited should be the same for any load under the elas~
tic limit, if Hooke's law were accurately obeyed, but in
reality they differ somewhat, especially if the material

lacks homogeneity. In the present instance (see Table)
we have from the

2d Exper. F = p-+e=28,680,000 1bs. per sq in.
5th « F= « =28,009,000 «
8th « E= « =27,848,000 « «

If similar computations were made beyond the elastio
limit, i.e., beyond the 8th Exper., the result would be much

smaller, showing the material to be yielding much more
readily.

192, Strain Diagrams—If we plot the stresses per sq. inch
(p) as ordinates of a curve, and the corresponding relative
elongations (¢) as abocissas, we obtain a useful graphic re-
presentation of the results of experiment.

Thus, the table of experiments just cited being utilized
in this way, we obtain on paper a series of points through
which a smooth curve may be drawn, viz.: OBC Fig. 200,
for wrought iron. Any convenient scales may be used for
P and ¢; and experiments having been made on other
metals in tension and the results plotted to the same scales
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as before for p and ¢, we have the means of comparing their
tensile properties. Fig. 200 shows two other curves, rep-
resenting (roughly) the average behavior of steel and cast
iron. At the respective elastic limits B, B, and B", it will
be noticed that the curve for wrought iron makes a sudden
turn from the vertical, while those of the others curve away
more gradually ; that the curve for steel lies nearer the
vertical axis than the others, which indicates a higher
value for E,; and that the ordinates BA4', B'4',and B"A4”
(respectively 21,000, 9,000, and 30,000 1bs. per sq. inch) in-

v
¢ (4
C
WROUGHT WROR,
/—_
’ /
R B i
H
ST R g
er—ff—A ! | g
o A’s I
Fie. 200.

dicate the tensile stress at the elastic limit. These latter
quantities will be called the moduli of tenacity at elastic
limit for the respective materials. [On a true scale the
point C would be much further to the right than here
shown. Only one half of the curve for steel is given, for
want of space.] :

Within the elastic limit the curves are nearly straight
(proving Hooke’s law) and if «, ¢, and a” are the angles
made by these straight portions with the axis of X (i.e.,
of ¢), we shall have

(E. for w.iron) : (E, c. iron) : (E, steel) ::tan a: tan «' : tan a'
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as a graphic relation between their moduli of elasticity
{since .E'F?).

Beyond the elastic limit the wrought iron rod shows large
increments of elongation for small increments of stress,
ie., the curve becomes nearly parallel to the horizontal
axis, until rupture occurs at a stress of 53,000 lbs. per &q.
inch of original sectional area (ab rupture this area is some-
what reduced, especially in the immediate neighborhood
of the section of rupture ; see next article) and after a rel-
ative elongation ¢== about 0.30, or 30%5. (The preceding
table shows only a portion of the results.) The curve
for steel shows a much higher breaking stress (100,000
lbs. per sq. in.) than the wrought iron, but the total
elongation is smaller, e= about 10%;. This is an average
curve ; tool steels give an elongation at rupture of about
4 to 5%, while soft steels resemble wrought iron in their
ductility, giving an extreme elongation of from 10 to 20%3.
Their breaking stresses range from 70,000 to 150,000 1bs.
or more per s8q. inch. Cast iron, being comparatively brit-
tle, reaches at rupture an elongation of only 3 or 4 tenths
of ome per cent., the rupturing stress being about 18,000
Ibs. per sq. inch. The elastic limit is rather ill defined in
the case of this metal ; and the proportion of carbon and
the mode of manufacture have much influence on its be-
havior under test.

193. Lateral Contraction—In the stretching of prisms of
nearly all kinds of material, accompanying the elongation
of length is found also a diminution of width whose rela-
tive amount in the case of the three metals just treated is
about 4 or 1/ of the relative elongation (within elastic
limit). Thus, in the third experiment in the table of § 191,
this relative lateral contraction or decrease of diameter
=1 to Y of ¢, ie., about 0.00008. In the case of cast
iron and hard steels contraction is not noticeable ex-
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oept by very delicate measmrements, both within and with.
out the elastio limit; but the more ductile metals, as
wrought iron and the soft steels, when stretched beyond
the elastic limit show this feature of their deformation
in a very marked degree. Fig. 201 shows by dotted lines
the original contour of a wrought iron rod, while the con-
tinuous lines indicate that at rupture. At the crosssection
; , of rupture, whose position is determined by some
local weakness, the drawing out is peculiarly
' pronounced.

The contraction of area thus produced is some-
times as great as 50 or 6095 at the fracture.

184. “Flow of Solids."—When the change in re-
lative position of the elements of a solid is ex-
treme, as ocours in the making of lead pipe,
| drawing of wire, the stretching of a rod of duc-
: tile metal as in the preceding article, we have

Fro. %01.  jngtances of what is called the Flow of Solids, in-
teresting experiments on which have been made by
Tresca. :

195. Moduli of Tenacity—The tensile stress per square
inch (of original sectional area) required to rupture a
prism of a given material will be denoted by 7" and called
the modulus of ultimate tenacity ; similarly, the modulus of
safe tenacity, or greatest safe tensile stress on an element,
by 7'; while the tensile stress at elastic limit may be
called 7'". The ratio of 7' to 7' is not fixed in practice
but depends upon circumstances (from ¥ to 34). .

Hence, if a prism of any material sustains a total pull
or load P, and has a sectional area=F", we have

P =FT' ¢« ¢« gafeload.

P=FT for the ultimate or breaking load. :
.« (9
P'=FT"« < load at elastio limit. }

Of course 7" should always be less than 7"
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106. Resilience of a Stretched Prism.—Fig. 202. In the
gradual stretching of a prism, fived at one extremity, the
value of the tensile force P at the other necessarily de-
pends on the elongation 1 at each stage of the lengthening,
according to the relation [eq. (1) of § 191.]

Pl
1 —ﬁt . L] L] L] ( 3)

-within the elastic limit. (If we place a weight G on the
flanges of the unstretched prism and then leave
it to the action of gravity and the elastic action
of the prism, the weight begins to sink, meeting
an increasing pressure P, proportional to 2, from
the flanges). Suppose the stretching to continue
until P reaches some value P’ (at elastic limit
1a sa.y) and 2 a value A”. Then the work done so
far is

U= mean force X sp&oe=/ Py .. @)

Tae. %2,

But from (2) P'= FT", and (see §§ 184 and 191)

A =e"l
» (4) becomes U= T"¢". Fl=y4T"'V . . ()

where ¥V is the volume of the prism. The quantity 145 7""¢",
or work done in stretching to the elastic limit a cubie
inch (or other unit of volume) of the given material, Weis-
bach calls the Modulus of Resilience for tension. From (5)
it appears that the amounts of work done in stretching to
the elastic limit prisms of the same material but of differ-
ent dimensions are proportional to their volumes simply.

The quantity 3 7'"¢" is graphically represented by the °
,area of one of the triangles such as 04'B, 04"B" in Fig.
200; for (in the curve for wrought iron for instance) the
modaulus of tenacity at elastic limit is represented by 4'B,
and ¢’ (ie., ¢ for elastic limit) by 04'. The remainder of
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the area OBU included between the curve and the hori-
zontal axis, i.e., from B to 0, represents the work done in
stretching a cubic unit from the elastic limit to the point
of rupture, for each vertical strip having an altitade = p
and a width =de, has an area =pde, i.e., the work done by
the stress p on one face of a cubic unit through the dis-
tance de, or increment of elongation.

If a weight or load = G be “ suddenly "applied to stretch
the prism, ie., placed on the flanges, barely touching
them, and then allowed to fall, when it comes to rest again
it has fallen through a height 1, and experiences at this
instant some pressure P, from the flanges; P,=? The
work G4, has been entirely expended in stretching the
prism, none in changing the kinetic energy of @, which
=0 at both beginning and end of the distance &,

o G1|= %Pl)q e P1’=2G.

Since P,=2Q, i.e., is > G, the weight does not remain in
this position but is pulled upward by the elasticity of the
prism. In faot, the motion is karmonic (see §§ 59 and
138). Theoretically, the elastic limit not being passed, the
oscillations should continue indefinitely.

Hence a load @ “suddenly applied ” occasions double the
tension it would if compelled to sink gradually by asup-
port underneath, which is not removed until the tension is
just =@, oscillation being thus prevented.

If the weight @ sinks through a height =# before strik-
ing the flanges, Fig. 202, we shall have similarly, within
elastic limit, if 4= greatest elongation, (the mass of rod
being small compared with that of @).

Ghti)—%Po . . . . (6)

If the elastio limit is to be just reached we have from eqs.
(6) and (6), neglecting 4, compared with &,

Gh=%TV . . . (D
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an equation of condition that the prism shall not be in-
jured.

Ezample.—If a steel prism have a sectional area of 1/
8q. inch and a length =10 ft. =120 inches, what is the
greatest allowable height of fall of a weight of 200 Ibs.,
that the final tensile stress induced may not exceed 7""'=
80,000 lbs. per sq. inch, if €’ =.002? From (7), using the
inch and pound, we have

_T""V_30,000x.002x 1/ x120__, « .

197, Stretching of a Prism by Its Own Weight.—In the case
. of a very long prism such as a mining-
3\ pump rod, its weight must be taken into
account as well as that of the terminal
load P, see Fig. 203. At (a.) the prism
is shown in its unstrained condition; at
(b) strained by the load P, and its own
weight. Let the cross section be =F, the
heaviness of the prism =7. Then the rela-

Fra. 208, tive extension of any element at a distance
+from o is .
&= FE, R e

/Bee eq. (1)§191) ; since P,+ Fyw is the load hanging upon
the cross section at that locality. Equal dz’s, therefore,
are unequally elongated, # varying from 0 to I. The total
elongation is

ol 1 Pl . .yl
A= - - 72 1
/j D=zg), [PdetrFedz]= oo +5m

Le., A== the amount due to P,, plus an extension which
half the weight of the prism would produce, hung at the
lower extremity.
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The foregoing relates to the deformation of the piece,
and is therefore a problem of stiffness. As to the strength
of the prism, the relative elongation e=di<-dx [see eq. (1)1,
which is variable, must nowhere exceed a safe value ¢'=
T'=E. (from eq. (1) § 191, putting P=FT', and 2=1).
Now the greatest value of the ratio di:dx, by inspecting
eq. (1), is seen to be at the upper end where z=IL The
proper cross section F, for a given load P, is thus found.

Putting ﬁr@——T_’, we have F — P,

1 . 2
FE. " E, T—l )

198, Solid of Uniform Strength in Tension, or hanging body
A ~ of mintmum material supporting its own
;. weight and a terminal load P,. Let it be a
solid of revolution. If every cross-section
F at a distance =z from the lower extrem-
ity, bears its safe load FT", every element
of the body is doing full duty, and its form
, 18 the most economical of material.
The lowest section must have an area
Fre. 204. Fy=P,=T', since P, is its safe load. Fig.
204. Consider any horizontal lamina ; its weight is y Fdx,
(r= heaviness of the material, supposed homogenous), and
its lower base ¥ must have P,+ @ for its safe load, i.e.

- ——g— a.

G+P=FT" . . . (1)

in which G denotes the weight of the portion of the solid
below F. Similarly for the upper base F+dF, we have

G+P+rFda=(F+dF)T' . . (9

By subtraction we obtain

yFdx=T'dF; i.e. %ndx: dTF



TENSION. . 217

in which the two variables z and F' are separated. By in-
tegration we now have

L, [Fdo= f’dF 7%1 %,'. )

_P =

ie., F—Foer—T, EF .« . « .« o (4)

from which F may be computed for any value of z.
The weight of the portion below any F' is found from (1)
and (4); ie.

g=p(F—) - O

while the total extension A will be

x_e,' —gwl . L] L] ’ L] Ld L L] (6)

the relative elongation di-+-dx being the same for every dx
and bearing the same ratio to ¢’ (at ela.stm limit), as 7'
does to 7",

199. Tensile Stresses Induced by Temperature.—If the two
ends of a prism are immovably fixed, when under no strain
and at a temperature ¢, and the temperature is then low-
ered to a value ¢/, the body suffers a tension proportional
to the fall in temperature (within elastic limit). If for a
rise or fall of 1° Fahr. (or Cent.) a unit of length of the
material would change in length by an amount 3 (called
the co-efficient of expansion) a length =I! would be con-
tracted an amount A=7l(¢-t') during the given fall of tem-
perature if one end were free. Hence, if this contraction
is prevented by fixing both ends, the rod must be under a
tension P, equal in value to the force which would be
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necessary to produce the elongation 4, just stated, under
ordinary circumstances at the lower tem perature.

From eq. (1) §191, therefore, we have for this tension
due to fall of temperature

P= E;E;;z«-zo:zmu’)»;

For 1° Cent. we may write
For Cast iron 7 = .0000111;
“ Wrought iron = .0000120;

“ Steel = .0000108 to .0000114 ;
“ Copper 7 = .0000172;
« Zinc 7 = .0000300.

COMPRESSION OF SHORT BLOCKS.

200. Short and Long Columns.—In a prism in tension, its
own weight being neglected, all the elements between the
localities of application of the pair of external forces pro-
ducing the stretching are in the same state of stress, if the
external forces act axially (excepting the few elements in the
immediate neighborhood of the forces; these suffering
local stresses dependent on the manner of application of
the external forces), and the prism may be of any length
without vitiating this statement. But if the two external
forces are directed foward each other the intervening ele-
ments will not all be in the same state of compressive
stress unless the prism is comparatively short (or unless
numerous points of lateral support are provided). A long
prism will buckle out sideways, thus even inducing ten§ﬂe
stress, in some cases, in the elements on the convex side.

Hence the distinction between short blocks and long
columns. Under compression the former yield by crush-
ing or splitting, while the latter give way by flexure (i.e.
bending). Long columns, then will be treated separately
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in a subsequent chapter. In the present section the blocks
treated being about three or four times as long as wide,
all the elements will be considered as being under equal
compressive stresses at the same time,.

201. Notation for Compression—By using a subscript c,
we may write

E,= Modulus of Elasticity;* ie. the quotient of the
compressive stress per unit of area divided by the relative
shortening ; also

C= Modulus of crushing; ie. the force per unit of sec-
tional area necessary to rupture the block by crushing;

C’= Modulus of safe compression, & safe compressive
stress per unit of area; and

"= Modulus of compression at elastic limit.

For the absolute and relative shortening in length we
may still use 1 and ¢, respectively, and within the elastic
limit may write equations similar to those for tension, F
being the sectional area of the block and P one of the ter-
minal forces, while p = compressive stress per unit of area
of F, viz.:

—p_P+F _P=+F_Pl
e wm @
within the elastic limit.
Also for a short block
Crushing force =F(C
Compressive force at elastic limit =FQ0" } (2y
Safe compressive force =FC’

202. Remarks on Crushing.—As in § 182 for a tensile
stress, so for a compressive stress we may prove that a

#[Nore.—It must be remembered that the modulus of elasticity,
whether for normal or shearing stresses, is a number indicative of stiff-
ness, not of strength, and has no relation to the elastic limit (except
that experiments to determine it must not pass that limit).]
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shearing stress =p sin a cos a is produced on planes at an
angle a with the axis of the short block, p being the com-
pression per' unit of area of transverse section. Accord-
ingly it is found that short blocks of many comparatively
brittle materials yield by shearing on planes making an
angle of about 45° with the axis, the expression p sin a
cos a reaching a maximum, for a=45°; that is, wedge-
shaped pieces are forced out from the sides. Hence the
necessity of making the block three or four times as long
as wide, since otherwise the friction on the ends would
cause the piece to show a greater resistance by hindering
this lateral motion. Crushing by splitting into pieces
parallel to the axis sometimes occurs.

Blocks of ductile material, however, yield by swelling
out, or bulging, laterally, resembling plastic bodies some-
what in this respect.

The elastic limit is more difficult to locate than in ten-
sion, but seems to have a position corresponding to that
in tension, in the case of wrought iron and steel. With
cast iron, however, the relative compression at elastic
limit is about double the relative extension (at elastic
limit in tension), but the force producing it is also double.
For all three metals it is found that E.=F, quite nearly,
so that the single symbol E may be used for both.

EXAMPLES IN TENSION AND COMPRESSION.

203. Tables for Tension and Compression.—The round num-
bers of the following tables are to be taken as rude averages
only, for use in the numerical examples following. (The
scope and design of the present work admit of nothing
more. For abundant detail of the results of the more im-
portant experiments of late years, the student is referred
to the recent works of Profs. Thurston, Burr, Lanza, and
Wood). Another column might have been added giving
the Modulus of Resilience in each case, viz.: 3 ¢'7T"

L

(which also =§T—l}’>; see § 196. ¢ is an abstract num-
t
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ber, and =2-+1, while E, 7", and T are given in pounds
per square inch: '

TABLE OF THE MODULI, ETC., OF MATERIALS IN TENSION.

e’ € E T T

Material. [(Elasticlimit.)| At Rupture. |Mod. of Elast.| Elasticlimit. | Rupturp.

.abst. number.[abst. number.|lbs. per sq. in.|lbs. per sq. in.|lbs. per sq. in.

Soft Steel, | . .09200 2500 26,000,000 50,000 80,000
™~
Hard Steel, .00200 .0500 40,600,000 99,000 130,000
Cast Iron, 00068 .0020 14,000,000 9,000 g.%
Wro't Iron, 00080 2500 28,000,000 22,000 to
60,000
7.000 16.000
Brass, .00100 10,000,000 to to
19,000 50,000
Glass, 9,000,000 3,500
Wood, with { 00200 L0070 200,000 8,000 8,000
to to to to to
the fibres, .01100 .0150 2,000,000 19,000 28,000
Hemp rope, 7,000

[N.B.—Expressed In kilograms per square centim., E, T and T” would be nu
merically about 1/,, as large as above, while ¢ and «” would be unchanged.]

TABLE OF MODULI, ETC.; COMPRESSION OF SHORT BLOCKS.

eII e Ec 0!/ 0
Material, | Elastic limit. | At Rupture. {Mod. of Elast.| Elastic limit. | Rupture.
abst. number |abst. number:.|Ibs. per sq. in.|Ibs. per sq. in.|lbs. per &q. i*.
Soft Steel, 0.00100 80,000,000 80,000
Hard Steel. 0.00120 0.3000 40,000,000 50,000 200,000
Cast Iron, 0.00150 14,000,000 20,000 90,000
Wro’t Iron, | 0.00080 0.8000 28,000,000 24,000 40,000
Glass, 20,000
Granite, 10,000
’ 8ee
Sandstone, 5,000
§213%a
Brick, 8,000
Wood, with { 0.0100 850,000 2,000
to ro to
the fibres, 0.0400 2,000,000 10,000
P | (§ 9130) 4000
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204, Examples. No. 1.—A bar of tool steel, of sectional
area =0.097 sq. inches, is ruptured by a tensile force of
14,000 Ibs. A portion of its length, originally 14 a foot,
is now found to have a length of 0.532 ft. Required 7,
and ¢ at rupture. Using the inch and pound as units (as
in the foregoing tables) we have I'=1X"=144326 lbs. per
8q. in.; (eq. (2) § 195); while

e=(0.532—0.5) x 12-+(0.50 x 12)=0.064.

ExamMpLE 2.—Tensile test of a bar of “ Hay Steel” for
the Glasgow Bridge, Missouri. The portion measured was
originally 3.21 ft. long and 2.09 in. X 1.10 in. in section.
At the elastic limit P was 124,200 lbs., and the elongation
was 0.064 ins. Required E, 7', and ¢’ (for elastic limit).

-4 — 0064 _ e s s
=T m—.&l% at elastio limit.

"= 124,200-+(2.09 X 1.10)= 54,000 Ibs. per sq. in.

p_P_ 124200 _ .
E; e Fe 230 00165 32,570,000 1bs. per sq. in.

Nearly the same result for E, would probably have been
obtained for values of p and e below the elastic limit.

The Modulus of Resilience of the above steel (see § 196)
would be %4 ¢’ T'"—44.82 inch-pounds of work per cubio
inch of metal, so that the whole work expended in stretch-
ing to the elastic limit the portion above cited is

U= ' T" V=3968. inch-lbs.

An equal amount of work will be ‘done by the rod in re-
covering its original length.

ExaMpLE 3.—A hard steel rod of 34 sq. in. section and
20 ft. long is under no stress at a temperature of 130¢




EXAMPLES IN TENSION AND COMPRESSION. 223

Cent., and is provided with flanges so that the slightest
contraction of length will tend t6 bring two walls nearer
together. If the resistance to this motion is 10 tons how
low must the temperature fall to cause any motion? 7 be-
ing =.0000120 (Cent. scale). From § 199 we have, ex-
pressing P in Ibs. and F in sq. inches, since ;= 40,000,000
{bs. per sq. inch,

10x2,000=40,000,000 x %4 x (130-¢') x 0.000012; whence
t'=46.6° Centigrade.

ExampLE 4.—If the ends of an iron beam bearing 5 tons °
at its middle rest upon stone piers, required the necessary
bearing surface at each pier, putting C’ for stone =200
Ibs. per sq. inch. . 25 s8q. in., Ans,

ExamprLE 5—How long must a wrought iron rod be,
supported vertically at its upper end, to break with its

~own weight ? 216,000 inches, Ans.

ExaMPLE 6.—One voussoir (or block) of an arch-ring
presses its neighbor with a force of 50 tons, the joint hav-
ing a surface of 5 sq. feet; required the compression per
8q. inch. 138.8 Ibs. per sq. in., Ans.

205. Factor of Safety —When, as in the case of stone, the
value of the stress at the elastic limit is of very uncertain
determination by experiment, it is customary to refer the
value of the safe stress to that of the ultimate by making
it the n’th portion of the latter. = is called a factor of
safety, and should be taken large enough to make the safe
stress come within the elastic limit. For stone, » should
not be less than 10, i.e, C/=C--n; (see Ex. 6, just given).

208. Practical Notes.—It was discovered independently by
Commander Beardslee and Prof. Thurston, in 1873, that
if wrought iron rods were strained considerably beyond
ihe elastic limit and allowed to remain free from stress
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for at least one day thereafter, a second test would show
higher limits both elastic and ultimate.

When articles of cast iron are imbedded in oxide of iron
and subjected to a red heat for some days, the metal loses
most of its carbon, and is thus nearly converted into
wrought iron, lacking, however, the property of welding.
Being malleable, it is called malleable cast tron.

Chrome steel (iron and chromium) and tungsten steel pos-
sess peculiar hardness, fitting them for cutting tools, rock
drills, picks, etc.

By fatigue of metals we understand the fact, recently dis-

" povered by Wohler in experiments made for the Prussian
Government, that rupture may be produced by causing the
ptress on the elements to vary repeatedly between two
limiting values, the highest of which may be considerably
below T (or (), the number of repetitions necessary to
produce rupture being dependent both on the range of
variation and the higher value.

For example, in the case of Pheenix iron in tension,
rupture was produced by causing the stress to vary from
) to 52,800 lbs. per sq. inch, 800 times; also, from O to
4,000 1bs. per sq. inch 240,853 times ; while 4,000,000 va-
tiations between 26,400 and 48,400 per sq. inch did not
cause rupture. Many other experiments were made and
the following conclusions drawn (among others):

Unlimited repetitions of variations of stress (lbs. per
4q. in.) between the limits given below will not injure the
metal (Prof. Burr’s Materials of Engineering).

Wrought iron. { Fl:?m 17,6 Comp. to 17,600 Tension. -

\ to 33,000 «

From 30,800 Comp. to 30,800 Tension.
Axle Cast Steel.{ “ 0 \ to 52,800 «
« 38500 Tews. to 88,000 “

(See p. 232 for an addendum to this'\\paragmph.)
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SHEARING.

207. Rivets—The angular distortion called shearing
strain in the elements of a body, is specially to be provided
for in the case of rivets joining two or more plates. This
distortion is shown, in Figs. 205 and 206, in the elements
near he plane of contact of the plates, much exaggerated.

Fie. 205, F1a. 206,

In Fig. 205 (a lap-joint) the rivet is said to be in single
shear ; in Fig. 206 in double shear. If P is just great
enough to shear off the rivet, the modulus of ultimate shear-
ing, which may be called S, (being the shearing force per
unit of section when rupture occurs) is

P_ P
e I

in which F=the cross section of the rivet, its diameter
being =d. For safety a value §'=1/ to 14 of § should
be taken for metal, in order to be within the elastic limit.

As the width of the plate is diminished by the rivet
hole the remaining sectional area of the plate should be
ample to sustain the tension P, or 2P, (according to the
plate considered, see Fig. 206), P being the safe shearing
force for the rivet. Also the thickness ¢ of the plate
should be such that the side of the hole shall be secure
against crushing ; P must not be > ("td, Fig. 205.

Again, the distance a, Fig. 205, should be such as to
prevent the tearing or shearing out-of the part of the
plate between the rivet and edge of the plate.
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For economy of material the seam or joint should be
no more liable to rupture by one than by another, of the

four modes just mentioned. The relations which must
then subsist will be illustrated in the case of the * butt-
joint” with two cover-plates, Fig. 207. Let the dimen-
sions be denoted as in the figure and the total tensile force
on the joint be = Q. Each rivet (see also Fig. 206) is ex-
posed in each of two of its sections to a shear of } @,
hence for safety against shearing of rivets we put

2Q=Y =28’ . . . . . . (1)

Along one row of rivets in the main plate the sectional
area for resisting tension is reduced to (b—3d)t,, hence for
safety against rupture of that plate by the tension ¢, we
put . i .

Q=(—3dtT' . . « . . . (2

Equations (1) and (2) suffice to determine d for the rivets
and ¢, for the main plates, @ and b being given; but the
values thus obtained should also be examined with refer-
ence to the compression in the side of the rivet hole, i.e.,
16 @ must not be > (", d. [The distance a, Fig. 205, to the
edge of the plate is recommended by different authorities
to be from d to 3d.]
Similarly, for the cover-plate we must have

%Qor —3ANT . . . (3
<
and 3Q not > C'td.
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If the rivets do not fit their holes closely, & large margin
should be allowed in practice. Again, in boiler work, the
pitch, or distance between centers of two consecutive rivets
may need to besmaller, to make the joint steam-tight, than
would be required for strength alone,

208. Shearing Distortion.—The change of form in an ele-
ment due to shearing is an angular deformation and will
be measured in 7-measure. This angular change or dif-
ference between the value of the corner angle during strain
and X4, its value before strain, will be called 4, and is
proportional (within elastic limit) to the shearing stress
per unit of area, p,, existing on all the four faces whose
angles with each other have been changed.

Fig. 208. (See § 181). By § 184 the Modulus of Shearing
Elasticity is the quotient obtained by dividing p, by J; ie.
{elastic limit not passed),

=P
E“a‘ P )

or invel‘sely, 6 -p.":' a0 . ) . . (1)'

The value of E, for different substances is most easily
determined by experiments on torsion
in which shearing is the most promi-
nent stress. (This prominence depends

t on the position of the bounding planes

7 of the element considered ; e.g., in Fig.

/i 208, if another element were considered
within the one there shown and with
Fie. 208. its planes at 45° with those of the first,

we should find tension alone on one pair of opposite faces,

compression alone on the other pair.) It will be noticed
that shearing stress cannot be present on two opposite
faces only, but exists also on another pair of faces (those
perpendicular to the stress on the first), forming a couple
of equal and opposite moment to the first, this being
necessary for the equilibrium of the element, even when
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tensile or compressive stresses are also present on the
faces considered.

209. Shearing Stress is Always of the Same Intensity on the
Four Faces of an Element.—(By ¢niensity is meant per unit
of area ; and the four faces referred to are those perpen-
dicular to the paper in Fig. 208, the shearing stress being
parallel to the paper.)

Let dx and dz be the width and height of the element
in Fig. 208, while dy is its thickness perpendicular to the
paper. Let the intensity of the shear on the right hand
face be ==q,, that on the top face =p,. Then for the ele-
ment av a free body, taking moments about the axis O per-
pendicular to paper, we have

¢, dz dy X do—p, dx dy X dz=0 .. gs=p,
(dx and dz being the respective lever arms of the forces
q. dz dy and p, dx dy.)

Even if there were also tensions (or compressions) on
one or both pairs of faces their moments about O would
balance (or fail to do so by a differential of a higher order;
independently of the shears, and the above result would
still hold.

210, Table of Moduli for Shearing.

a9 E, s” S
Material 1.e.8 at elastio |Mod. "sfmgt? (Elastiolimit) | (Rupture.)
arc in w-measure.| lbs. persq. in. | lbs. persq.in Ibs. peraq. i=
Soft Steel, 9,000,000 70,000
Hard Steel, 0.0082 14,000,000 45,000 90,000
Cast Iron, 0.0021 7,000,000 15,000 30,000
‘Wrought Iron, 0.0022 9,000,000 20,000 50,000
Brass, 5,000,000
Glass,
‘Wood, across 1,500
fibre, 8.&?0
Wood, along 500
fibre, { 1.%)
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As in the tables for tension and compression, the above
values are averages. The true values may differ from
these as much as 30 per cent. in particular cases, accord-
ing to the quality of the specimen.

211. Punching rivet holes in plates of metal requires the
overcoming of the shearing resistance along the convex
surface of the cylinder punched out. Hence if d = diam-
eter of hole, and ¢ = the thickness of the plate, the neces-
sary force for the punching, the surface sheared being
F=tznd, is

.P= St’!'d . ) . . (2) '

Another example of shearing action is the “stripping ”
of the threads of a screw, when the nut is forced off lon-
gitudinally without turning, and resembles punching in
its nature.

212. Eand E,; Theoretical Relation—In case a rod is in
tension within the elastic limit, the relative (linear) lateral
contraction (let this =m) is so connected with Z, and E,
that if two of the three are known the third can be de-
duced theoretically. This relation is proved as follows,
by Prof. Burr. | Taking an elemental cube with four of its
faces at 456° with the axis of the piece, Fig. 209, the axial
half-diagonal 4D becomes of a length AD'=AD-+¢c.AD
under stress, while the transverse half diagonal contracts
to a length B'D'=A4D—m.AD. The angular distortion 3

/<g‘a,

LI

L]
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is supposed very small compared with 90° and is due to
the shear p, per unit of area on the face BC (or BA).
From the figure we have

o 8y _ BD_1—m_
tan(45 '§) A0 1Te 1—m—s, approx.
[But, Fig, 210, tan(45°—xz)=1—2r nearly, where x is a
small angle, for, taking- CA==runity=AE, tan 4D=AF=
AE—FEF. Now approximately EF=EG.,/2and EG—
BD,/2=wx4/2.. AF=1—2z nearly.] Hence

1—6=1—m—e; ord=m+e . . (2)

Eq. (2) holds good whatever the stresses producing the
deformation, but in the present case of a rod in tension,
if it is an isotrope, and if p = tension per unit of area on
its transverse section, (see § 182, putting a=45°), we have
E,=p-+e¢and E,=(p,on BC)+0=1Yp+d. Putting also
(m :e)=r, whence m=r¢, eq. (2) may finally be written

E,
(r+1) —_; le., E,= 2(_1—-{—7') . . (3

Prof. Bauschinger, experimenting with cast iron rods,
found that in tension the ratiom:ewas = 3, as an average,
which in eq. (3) gives

100 2
246E 5 = E, nearly. . . . @)

E~
His experiments on the torsion of east iron rods gave
£,= 6,000,000 to 7,000,000 1bs. per sq. inch. By (4), then,
E, should be 15,000,000 to 17,500,000 which is approxi-
mately true (§ 203).
Corresponding results may be obtained for short blocks
in compression, the lateral change being a dilatation in-
stead of a contraction.



SHEARING. 231

$18. Examples in Shearing.—ExaMPLE 1.—Required the
proper length, a, Fig. 211, to

/\ guard against the shearing off,
%% along the grain, of the portion
ab, of & wooden tie-rod, the force
P being = 2 tons, and the width

{ of the tie = 4 inches. Using a
' value of 8§/ = 100 lbs. per sq. in.,
P we put baS'=4,000 cos 45°; i.e.
Pre. 11, " a=(4,000%0.707)+(4x100) = 7.07
inches.

Exawpie 2.~A 7 in. rivet of wrought iron, in single
shear (see Fig, 205) has an ultimate shearing strength
P=F8=Ynd'8= 1/n( ) x 50,000=130,050 Ibs. For safety,
putting §'=8,000 instead of S, P'=4,800 lbs. is its safe
shearing strength in single shear.

The wrought iron plate, to Le secure against the side-
crushing in the hole, should have a thickness ¢, computed
thus:

P'=td(; or 4,800=t.76 x12,000 .". ¢=0.40 in.

If the plate were only 0.23 in. thick the safe value of P
would be only 14 of 4,800.

ExaupLE 3—Conversely, given a lap-joint, Fig. 205, in
which the plates are 1{ in. thick and the tensile force on
the joint = 600 Ibs. per linear inch of seam, how closely
must 3/ inch rivets be spaced in one row, putting §'=8,000
and ('=12,000 lbs. per 8q. in.? Let the distance between
centres of rivets be =z (in inches), then the force upon
each rivet =600z, while its section F'=0.448q.in. Having
regard to the shearing strength of the rivet we put 600z=
0.44x 8,000 and obtain 2=>5.86 in.; but considering that the
safe crushing resistance of the hole is =1{-3/.12,000=
2,250 Ibs., 6002=2,250 gives x=3.75 inches, which is the
pitch to be adopted. What is the tensile strength of the
reduced sectional area of the plate, with this pitch ?
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ExaMpLE 4—Double butt-joint; (see Fig. 207); 3 inch
plate; 3{ in. rivets; I"=("'=12,000; 5'=8,333; width of
plates=14 inches. Will one row of rivets be sufficient at
each side of joint, if ¢=30,0001bs.? The number of rivets
= ? Here each rivet is in double shear and has therefore
a double strength as regards shear. In double shear the
safe strength of each rivet =2F8'="17,333 1bs. Now 30,000+
7,333=4.0 (say). With the four rivets in one row the re-
duced sectional area of the main plate is =[14—4X341x%,
=4.12 8q. in., whose safe tensile strergth is =F7"=4.12X
12,000=49,440 1bs.; which is >30,000 lbs. .. main plate is
safe in this respect. But as to side-crushing in holes
in main plate we find that C't,d (i.e. 12,000%%/sX 34 =3,375
Ibs.) is <3{Qi.e.<7,500 lbs., the actual force on side of
hole.. Hence four rivets in one row are too few unless
thickness of main plate be doubled. Will eight in one
row be safe?

213a. (Addendum to § 206.) Elasticity of Stone and Cementas.
—Experiments by Gen. Gillmore with the large Watertown
testing-machine in 1883 resulted as follows (see p. 221 for
notation):

With cubes of Haverstraw Freestone (a homogeneous brown-
stone) from 1 in. to 12 in. on the edge, %, was found to be
from 900,000 to 1,000,000 lbs. per sq. in. approximately ; and
¢ about 4,000 or 5,000 lbs. per sq. in. Cubes of the same
range of sizes of Dyckerman’s Portland cement gave Z, from
1,350,000 to 1,630,000, and C from 4,000 to 7,000, 1bs. per sq.
in. Cubes of concrete of the above sizes, made with the
Newark Cc.’s Rosendale cement, gave E, about 538,000, while
cubes of cement-mortar, and some of concrete, both made with
National Portland cement, showed Z, from 800,000 to 2,000,
000 Ibs. per sq. in. )

The compressibility of drick piers 12 in. square in section
and 16 in. high was also tested. They were made of common
North River brick with mortar joints § in. thick, and showed
a value for Z, of about 300,000 or 400,000, while at elastic
limit C*” was on the average 1,000, Ibs. per sq. in.
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CHAPTER IL
TORSION.

214. Angle of Torsion and of Helix. When a cylindrical
beam or shaft is subjected to a twisting or torsional action,
t.e. when it is the means of holding in equilibrium two
couples in parallel planes and of equal and opposite mo-
ments, the longitudinal axis of symmetry remains straight

and the elements along it exper-
( o / , \ience no stress (whence it may be
o
pd
(\

{—7# Joalled the “line of no twist™),
X! [ / while the lines originally parallel to

Fre. 212, it assume the form of helices, each
element of which is distorted in its angles (originally
right angles), the amount of distortion being assumed pro-
portional to the radius of the helix. The directions of the

[ Q
\
0
S —y
I — A
P . 4
? Q
Fre. 218.

faces of any element were originally as follows : two radial,
two in consecutive transverse sections, and the other two
tangent to two consecutive circular cylinders whose com-
mon axis is that of the shaft. E.g. in Fig. 212 we have
an unstrained shaft, while in Fig. 213 it holds the two
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couples (of equal moment Pa=Qb) in equilibrium. These
couples act in parallel planes perpendicular to the axis of
the prism and a distance, /, apart. Assuming that the
transverse sections remain plane and parallel during tor-
sion, any surface element, m, which in Fig. 212 was entire-
ly right-angled, is now distorted. Two of its angles have
been increased, two diminished, by an amount J, the angle
between the helix and a line parallel to the axis. Suppos-
ing m to be the most distant of any element from the axis,
this distanoce being e, any other element at a distance =

from the axis experiences an angular distortion -=§ J.

If now we draw O B’ parallel to 0’4 the angle B 0 B’,
==q, is called the Angle of Torsion, while 3 may be called the
heliz angle; the former lies in a transverse plane, the latter
in a plane tangent to the cylinder. Now

tan ¢ =(linear arc B B’)<!; but lin. arc B B’ = ea ; henoce,
putting & for tan J, (8 being small)

6—?000000000(1)

(4 and a both in 7 measure).

215, Shearing Stress on the Elements. The angular distor-
tion, or shearing strain, 8, of any element (bounded as al-
ready described) is due to the shearing stresses exerted on
it by its neighbors on the four faces perpendicular to the
tangent plane of the cylindri-

Bt / cal shell in which the element
[ [ & \is situated. Consider these

<____\_/ |neighboring elements of an
3\ ~[ m] 2 3¢/ outside element removed, and
the stresses put in; the latter
n ;‘Psd‘ are accountable for the dis-
-3

tortion of the element and so
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hold it in equilibrium. Fig. 214 shows this element
“free.” Within the elastic limit & is known to be propor-
tional to p,, the shearing stress per unit of area on the
faces whose relative angular positions have been changed.
That is, from eq. (1) § 208, § =p,=E,; whence, see (1) of
§ 214,

In (2) p, and € both refer to a surface element, ¢ being
the radius of the cylinder, and p, the greatest intensity of
shearing stress existing in the shaft. Elements lying nearer
the axis suffer shearing stresses of less intensity in pro-
portion to their radial distances, i.e., to their helix-angles.
That is, the shearing stress on that face of the element
which forms a part of a transverse section and whose dis-

tance from the axis is z, is p, =-§ Ps per unit of area, and

the total shear on the face is pdF, dF being the area of the
face.

216. Torsional Strength.—We are now ready to expose the
full transverse section of a shaft under torsion, to deduce
formule of practical utility. Making a right section of
the shaft of Fig. 213 anywhere between the two eouples
and considering the left hand portion as a free body, the
foroes holding it in equilibrium are the two forces P of
the left-hand couple and an infinite number of shearing
forces, each tangent to its circle of radius z, on the cross
section exposed by the removal of the right-hand portion.
The cross section is assumed to remain plane during tor-
sion, and is composed of an infinite number of d#’s, each
being the area of an exposed face of an element ; see Fig,
216.
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Fie. 215.

Each elementary shearing force = p,dF, and & is its
lever arm about the axis Oo. For equilibrium, 3’ (mom.)
about the axis 0o must =0; i.e. in detail

—P¥%a—Pyat [ (2 pdF)=0

or, reducing,

Z_;' #2dF=Pa ; or, 2“;1-."-=Pa . . 3

Eq. (3) relates to torsional strength, since it contains p,, the
greatest shearing stress induced by the torsional couple,
whose moment Pa is called the Moment of Torsion, the
stresses in the cross section forming a couple of equal and
opposite moment.

1, is recognized as the Polar Moment of Inertia of the cross
section, discussed in § 94 ; e is the radial distance of the
outermost element, and = the radius for a circular shaft.

217. Torsional Stiffness.—In problems involving the angle
of torsion, or deformation of the shaft, we need an ecua-
tion connecting Pa and a, which is obtained by substitut-
ing in eq. (3) the value of p, in eq. (2), whence

ﬁiﬁhpa. N ()
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From this it appears that the angle of torsion, ¢, is propor-
tional to the moment of torsion, Pa, within the elastic
limit ; a must be expressed in n-measure. Trautwine cites 1°
(i.e. @=0.0174) as a maximum allowable value for shafts.

218. Torsional Resilience is the work done in twisting a
shaft from an unstrained state until the elastic limit is
reached in the outermost elements. If in Fig. 213 we
imagine the right-hand extremity to be fixed, while the
other end is gradually twisted through an angle a; each
force P of the couple must be made to increase grddually
from a zero value up to the value P,, corresponding to a,
In this motion each end of the arm a describes a space
- =1 aa,, and the mean value of the force = 14 P, (compare
§ 196). Hence the work done in twisting is

U= %P X Yaux2=Y%Pasy, . . (5)
By the aid of preceding equations, (5) can be written

ps 8

If for p, we write S’ (Modulus of safe shearing) we have
for the safe resilience of the shaft

. 87I]
U _TE'—;‘ N L] [ ] [ ] L] (7)

If the torsional elasticity of an originally unstrained shaft
is to be the means of arresting the motion of a moving
mass whose weight is @, (large compared with the parts
intervening) and velocity =v, we write (§ 133)

a8 the condition that the shaft shall not be injured.
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219. Polar Moment of Inertia—For a shaft of circular
cross section (see § 94) I=23nr; for a hollow cylinder
I =Y n(r*—ry) ; while for asquare shaft I==143", b being
the side of the square; for a rectangular cross-section
sides b and k, I=750h(8*4-%%). For acylinder e=r; if hol-
low, e=r, the greater radius. For a square, e=14b4/2.

220. Non-Circular S8hafts—If the cross-section is not cir-
cular it becomes warped, in torsion, instead of remaining
plane. Hence the foregoing theory does not strictly ap-
ply. The celebrated investigations of St. Venant, how-
ever, cover many of these cases. (See § 708 of Thompson
and Tait’s Natural Philosophy ; also, Prof. Burr’s Elas-
ticity and Strength of the Materials of Engineering). His
results give for a square shaft (instead of the

i‘%E’= Pa of eq. (4) of § 217),

Pa=—0841 i‘%—’?': ¢ )
and . Pa _'/,b*p,, instead of eq. (3) of § 216, p, being the
greatest shearing stress.

The elements under greatest shearing strain are found
at the middles of the sides, instead of at the corners, when
the prism is of square or rectangular cross-section. The
warping of the cross-section in such a case is easily veri-
fied by the student by twisting a bar of india-rubber in
his fingers.

221. Transmission of Power.—Fig. 216. Suppose the cog-
wheel B to cause 4, on the
same shaft, to revolve uni-
formly and overcome a resis-
tance (), the pressure of the
teeth of another cog-wheel,

P Bbeingdriven by still another
wheel. The shaft 4B is un-
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der torsion, the moment of torsion being = Pa==Qb, (P,
and @, the bearing reactions have no moment about the
axis of the shaft). If the shaft makes u revolutions per
unit-time, the work transmitted (transmitted ; not expend-
ed in twisting the shaft whose angle of torsion remains
constant, corresponding to Pa) per unit-time, i.e. the Power,
is

L=P2ro.u=2ruPa . . . (8)

To reduce L to Horse Power (§ 132), we divide by X,
the number of units of work per unit-time constituting
one H. P. in the system of units employed, i.e.,

Horse Power =H. P.— 2“’3{:‘1

For example N=33,000 ft.-lbs. per minute, or = 396,000
inch-lbs. per minute ; or =550 ft.-1bs. per second. Usually
the rate of rotation of a shaft is given in revolutions per
minute, :

But eq. (8) happens to contain Pa the moment of torsion
acting to maintain the constant value of the angle of tor-
sion, and since for safety (see eq. (3) § 216) Pa=S"I e,
with I,= 147" and e=1r for a solid circular shaft, we have
for such a shaft

(Sate), . P20 . .. (@)

which is the safe H. P., which the given shaft can trans-
mit at the given speed. S’ may be made 7,000 Ibs. per sq.
inch for wrought iron; 10,000 for steel, and 5,000 for cast-
iron. If the value of Pa, fluctuates periodically, as when
a shaft is driven by a connecting rod and crank, for (H. P.)
we put mX(H. P.), m being the ratio of the maximum to
the mean torsional moment; m = about 1!/, under ordi-
nary circumstances (Cotterill).




240 MECHANICS OF ENGINEERING.

222. Autographic Testing Machine.—The principle of Prot
Thurston’s invention bearing this name is shown in Fig

TEST-PIECE

Fie. 217.

217. The test-piece is of a standard shape and size, its
central cylinder being subjected to torsion. A jaw, carry-
ing a handle (or gear-wheel turned by a worm) and a drum
on which paper is wrapped, takes a firm hold of one end
of the test-piece, whose further end lies in another jaw
rigidly connected with a heavy pendulum carrying a pen-
cil free to move axially. By a continuous slow motion of
the handle the pendulum is gradually deviated more and
more from the vertical, through the intervention of the
test-piece, which is thus subjected to an increasing tor-
sional moment. The axis of the test-piece lies in the axis
of motion. This motion of the pendulum by means of a
properly curved guide, WR, causes an axial (ie., parallel
to axis of test-piece) motion of the pencil 4, as well as an
angular deviation 3 equal to that of the pendulum, and
this axial distance CF,=sT, of the pencil from its initial
position measures the moment of torsion=/Pa=Pe sin g.
As the piece twists, the drum and paper move relatively
to the pencil through an angle 800 equal to the angle
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of torsion a so far attained. The abscissa so and ordinate
sT of the curve thus marked on the paper, measure,
when the paper is unrolled, the values of aand Pa through
all the stages of the torsion. Fig. 218 shows typical

~

wﬂ
Fia. 218,

yurves thus obtained. Many valuable indications are
given by these strain diagrams as to homogéneousness of
composition, ductility, etc., etc. On relaxing the strain
at any stage within the elastic limit, the pencil retraces
its path; but if beyond that limit, a new path is taken
called an “elasticity-line,” in general parallel to the first
part of the line, and showing the amount of angular re-
covery, B(, and the permanent angular set, OB.

223. Examples in Torsion.—The modulus of safe shearing
strengtn, &, as given in § 221, is expressed in pounds per
square inch ; hence these two units should be adopted
throughout in any numerical examples where one of the
above values for S’ is used. The same statement applies
to the modulus of shearing elasticity, E,, in the table of
§ 210.

ExaxrLE 1.—Fig. 216. With P =1 ton,a = 3 ft.,l =
10 ft., and the radius of the cylindrical shaft r=2.5 inches,
required the max. shearing stress per sq. inch, p,, the
shaft being of wrought iron. From eq. (3) § 216

_ Pae _ 2,000x36x2.5 _ .
4 L 7% (2.5)° 2,930 Ibs. per sq. inch,

which is a safe value for any ferrous metal
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ExampLE 2—What H. P. is the shaft in Ex. 1 transmit-
ting, if it makes 50 revolutions per minute? Lot u =
number of revolutions per unit of time, and N = the num-
ber of units of work per unit of time constituting one
horse-power. Then H. P.=Pu2za-+ N, which for the foot-
pound-minute system of units gives

H. P.=2,000x 50 % 277 x 3+33,000=573{ H. P.

ExampLE 3.—What different radius should be given to
the shaft in Ex. 1, if two radii at its extremities, originally
parallel, are to make an angle of 2° when the given moment
of torsion is acting, the strains in the shaft remaining con-
stant. From eq. (4) § 217, and the table 210, with a=5nx=
0.035 radians (ie. z-measure), and I,='/;xr4, we have

2,000x 36x 120

%770.035x9’000,000 —17.45 o r=2-04 mches.

(This would bring about a different p,, but still safe.) The
foregoing is an example in stiffness.

ExamMpLE 4.—A working shaft of steel (solid) is to trans-
mit 4,000 H. P. and make 60 rev. per minute, the maximuam
twisting moment being 114 times the average; required
its diameter. d=14.74 inches. Ans.

ExampLE 5—In example 1, p,=2,930 lbs. per square
inch ; what tensile stress does this imply on a plane at 45°
with the pair of planes on which p, acts ? Fig. 219 shows
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a small cube, of edge =dxz, (taken from the outer helix of
Fig. 215,) free and in equilibrium, the plane of the paper
being tangent to the cylinder ; while 220 shows the portion
BDC,also free, with the unknown total tensile stress pda*,/2
acting on the newly exposed rectangle of area =dxxdz,/2,
p being the unknown stress per unit of area. From sym-
metry the stress on this diagonal plane has no shearing
component. Putting X [components normal to BD]=0,
we have

pdat/2=2dx’p,c0845°=da*p,4/2 .. p=p, . (1)

That is, a normal tensile stress exists in the diagonal
plane BD of the cubical element equal in intensity to the
shearing stress on one of the faces, i.e., =2,930 Ibs. per sq.
in. in this case.

Similarly in the plane 4C will be found a compressive
stress of 2,930 lbs. per 8q. in. If a plane surface had been
exposed making any other angle than 45° with the face of
the cube in Fig. 219, we should have found shearing and
normal stresses each less than p, per sq. inch. Hence the
interior dotted cube in 219, if shown “free ” is in tension
in one direction, in compression in the other, and with
no shear, these normal stresses having equal intensities.
Since S’ is usually less than 7"’ or C/, if p, is made = S’
the tensile and compressive actions are not injurious. It
follows therefore that when a cylinder is in torsion any
helix at an angle of 45° with the axis is a line of tensile,
or of compressive stress, according as it is a right or left
handed helix, or vice versa.

ExaMpPLE 6.—A solid and a hollow cylindrical shaft, of
equal length, contain the same amount of the same kind
of metal, the solid one fitting the hollow of the other.

Compare their torsional strengths, used separately.
The solid shaft bas only 7% the strength of the hollow
one., Ans.

Iy
1,000
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CHAPTER IIL

FLEXUREOFHOMOGENEOUS PRISMSUNDER
PERPENDICULAR FORCES IN ONE PLANE.

224, Assumptions of the Common Theory of Flexure.—When
a prism is bent, under the action of external forces per-
pendicular to it and in the same plane with each other, it
may be assumed that the longitudinal fibres are in tension
on the convex side, in compression on the concave side,
and that the relative stretching or contraction of the ele-
ments is proportional to their distances from a plane in-
termediate between, with the understanding that the flex-
ure is slight and that the elastic limit is not passed in any
element.

This “ common theory ” is sufficiently exact for ordinary
engineering purposes if the constants employed are prop-
erly determined by a wide range of experiments, and in-
volves certain assumptions of as simple a nature as possi-
ble, consistently with practical facts. These assumptions
are as follows, (for prisms, and for solids with variable cross
sections, when the cross sections are similarly situated as
regards a ocentral straight axis) and are approximately
borne out by experiment :

(1.) The external or “ applied ” forces are all perpendicu-
lar to the axis of the piece and lie in one plane, which may
be called the force-plane; the force-plane contains the
axis of the piece and cuts each cross-section symmetri-
cally;

(2.) The cross-sections remain plane. surfaoes during
flexure ;

(8.) There is a surface (or, rather, sheqt of elements)
which is parallel to the axis and perpedicular to the
force-plane, and along which the elements Qf the solid ex-

S



FLEXURE. 245

perience no tension nor compression in an axial direction,
this being called the Neutral Surface;

(4.) The projection of the neutral surface upon the force
plane (or a [ plane) being called the Neutral Line or Elastic
Curve, the bending or flexure of the piece is so slight that
an elementary division, ds, of the neutral line may be put
=dz, its projection on a line parallel to the direction of
the axis before flexure;

(5.) The elements of the body contained between any
two comsecutive cross-sections, whose intersections with
the neutral surface are the respective Neutral Axes of the
sections, experience elongations (or contractions, accord-
ing as they are situated on one side or the other of the
neutral surface), in an axial direction, whose amounts are
proportional to their distances from the neutral axis, and
indicate corresponding tensile or compressive stresses ;

(6) E=E,;

(7.) The dimensions of the cross-section are small com-
pared with the length of the piece ;

(8.) There is no shear perpendicular to the force plane
on internal surfaces perpendicular to that plane.

In the locality where any one of the external forces is
applied, local stresses are of course induced which demand
separate treatment. These are not considered at present.

225, Nlustration.—Consider the case of flexure shown in
Fig. 221. The external forces are three (neglecting the

)

Fia. 221,
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weight of the beam), viz.: P, P,, and P;, P, and P,are
loads, P, the reaction of the support.

The force plane is vertical. N,L is the neutral line or
elastic curve. NA is the neutral axis of the cross-section
at m; this cross-section, originally perpendicular to the
sides of the prism, is during flexure =] to their tangent
planes drawn at the intersection lines ; in other words, the
side view QNB, of any cross-section is perpendicular to
the neutral line. In considering the whole prism free we
have the system P, P, and P; in equilibrium, whence
from 2Y=0 we have Py;=P,+ Py, and from 3 (mom. about
0) =0, PJd,—P|l,. Hence given P, we may determine the
other two external forces. A reaction such as P, is some-
times called a supporting force. The elements above the
neutral surface N;0LS are in tension ; those below in com-
pression (in an axial direction).

226. The Elastic Forcesa—Conceive the beam in Fig. 221
separated into two parts by any transverse section such
a8 Q4, and the portion N;ON, considered as a free body
in Fig. 222. Of this free body the surface Q4B is one of
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the bounding surfaces, but was originally an internal sur-
face of the beam in Fig. 221. Hence in Fig. 222 we must
put in the stresses acting on all the dF’s or elements of area
of QA4B. These stresses represent the actions of the body
taken away upon the body which is left, and according to
assumptions (5), (6) and (8) consjst of normal stresses (ten-
sion or compression) proportional per unit of area, to the
distance, 2, of the dF’s from the neutral axis, and of shear-
ing stresses parallel to the force-plane (which in most
cases will be vertical).

The intensity of this shearing stress on any dF varies
with the position of the dF with respect to the neutral
axis, but the law of its variation will be investigated later
(88 253 and 254). These stresses, called the Elastic Forces
of the cross-section exposed, and the external forces P, and
P,, form a system in equilibrium. We may therefore ap-
ply any of the conditions of equilibrium proved in § 38.

227. The Neutral Axis Contains the Centre of Gravity of the
Cross-Section.—F'ig. 222. Let e= the distance of the outer-
most element of the cross-section from the neutral axis, and
the normal stress per unit of area upon it be =p, whether
tension or compression. Then by assumptions (5) and (6),
§ 224, the intensity of normal stress on any dFis = £ p
and the actual

.

normal stress on any dF is=% pdF . (1)

This equation is true for dF’s having negative #’s, i.e,
on the other side of the neutral axis, the negative value
of the force indicating normal stress of the opposite char-
acter ; for if the relative elongation (or contraction) of two
axial fibres is the same for equal z’s, one above, the other
below, the neutral surface, the stresses producing the
changes in length are also the same, provided E,= E,; see §§
184 and 20L .
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For this free body in equilibrium put JX=0 (Xisa
horizontal axis). Put the normal stresses equal to their
X components, the flexure being so slight, and the X com-
ponent of the shears = 0 for thesame reason. This gives

(see eg. (1) )

d =0;ie L =0;or, 2 Fzi=
f?de O,Le.edez O,or,er 0o @

In which z= distance of the centre of gravity of the cross-
section from the neutral axis, from which, though un-
known in posi